

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

منها رتهارها

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
$\mathcal{A}\mathcal{D}$	A950 709
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Dredging and Water Quality Problems	
In the Great Lakes. Volume 2. Apper	
to A19. Sampling Surveys with Separ	rate Report PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(D)
	(13.50)
PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer District, Buffa	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1776 Niagara Street	
Buffalo, New York 14207	
. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Engineer District, Buffa	
1776 Magara Street	13. NUMBER OF PAGES
Buffalo, New York 14207	226
MONITORING AGENCY NAME & ADDRESS(If dillerent from Co	mirolling Office) 15. SECURITY CLASS. (of this report)
	15a. DECLASSIFICATION/DOWNGRADING
	SCHEOULE
DISTRIBUTION STATEMENT (of this Report)	
Distribution Unlimited	
C OISTOIDUTION STATEURNE (-4.4)- ab-tra-t actual la Black	00 H dillowed from Brown
17. DISTRIBUTION STATEMENT (of the obstract entered in Block	20, it different from Reporty
8. SUPPLEMENTARY NOTES	
 KEY WORDS (Continue on reverse side if necessary and identify Dredging 	y by block number)
Water Quality	
Water Pollution	
O. ABSTRACT (Continue on reverse slds if recovery and identify	
The present report presents the re-	sults of a study conducted by the Corps
Engineers with cooperation of the	Federal Water Pollution Control Adminis
ration to evaluate the effects of	water quality of current dredging pract
including the disposal of dredged	material in unconfined open water area
of the Great Lakes, as well as to	develop the most practical methods for
management of pollution problems the	hat may be identified as resulting from
dredging operations on the Lakes.	The investigations conducted during
the study included contruction and	operation of diked areas, treatment

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Prop. Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered) of the dredged material, modifications to dredge equipment and in dredging operations, functional studies of the effects on lake ecology of open-lake disposal, surveys of possible alterate disposal areas at 37 Great Lakes harhows and connecting channels, and an economic evaluation of benefits which might accrue from improved Great Lakes water quality.

Appendix A

SAMPLING SURVEYS WITH SEPARATE REPORTS

Most of the sampling surveys conducted for the present study were concentrated at the eight pilot areas. However, a number of other navigation projects were sampled in as much detail as time and resources permitted. This appendix is an inventory of the sampling surveys, made during the course of the present study, for which separate reports were prepared for individual projects.

Inventory of Sampling Surveys With Separate Report

Project	CAT	Sampling Agency	Appendix No.	
Lake Superior:			•	
None with a separate report				
Lake Michigan:				
Calumet River and Harbor,	1967	FWPCA	A8	
Illinois and Indiana	1968	FWPCA	n/a	
Frankfort Harbor, Michigan	1967	LS	A24	
Green Bay Harbor, Wisconsin	1967	FWPCA	A9	
•	1968	FWPCA	A13	
Indiana Harbor, Indiana	1967	FWPCA	A7	
·	1967	LS	A25	
Kenosha Harbor, Wisconsin	1968	PWPCA	A15	
Manistee Harbor, Michigan	1967	LS	A22	
Manitowac Harbor, Wisconsin	1968	FWPCA	A18	
Milwaykee Harbor, Wisconsin	1968	FWPCA	A16	
New Buffalo Harbor, Michigan	1968	FWPCA	A10	
Oconto Harbor, Wisconsin	1968	FWPCA	A11	
Pensaukee Harbor, Wisconsin	1968	FWPCA	A12	
Port Washington Harbor, Wisconsin	1968	FWPCA	A17 n For	_
Two Rivers, Michigan	1968	FWPCA	A19	
Waukegan Harbor, Illinois	1968		A14 121	•
Lake Huron and Connecting Channels:		- 1.5	L}	
Alpena Harbor, Michigan	1967	LS	A23 `sd 🗍	
Au Sable Harbor, Michigan	1967	LS	A20 1 101	
Rouge River, Michigan	1967	FWPCA	A6	
Lake Erie:				
Ashtabula Harbor, Ohio	1967	LS	A26 ion/	
Buffalo Harbor, Black Rock			/	
Channel and Tonawanda			lity Codes	
Harbor, New York	1967	FWPCA	A3 snd/or Special	

This decument has been approved for public release and sale; its distribution is unlimited.

MANNOUNCED

Table Cont.

Project	Year	Sampling Agencya	Arpendix No.
Cleveland Harbor, Ohio	1967	FWPCA	A4
,	1967	LS	A29
	1968	FWPCA	A5
Erie Harbor, Pennsylvania	1967	LS	A28
Lorain Harbor, Ohio	1967	LS	A30
Sandusky Harbor, Ohio	1967	LS	A21
Toledo Harbor, Ohio	1967	LS	A27
Lake Ontario:			
Great Sodus Bay Harbor, New York	1967	FWPCA	A1
•	1968	FWPCA	A2

a - Agency abbreviations: FWPCA - Federal Water Pollution Control Administration; LS - U. S. Lake Survey District

n/a - Not available

APPENDIX A I

PILOT STUDY

Summer 1967

GREAT SODUS BAY
DISPOSAL OF DREDGINGS

U. S. DEPARTMENT OF THE INTERIOR
Federal Water Pollution Control Administration
Great Lakes Region
Rochester Program Office
Rochester, New York

January 1968

U. S. DEPARTMENT OF INTERIOR Pederal Water Pollution Control Administration Great Lakes Region Rochester Program Office Rochester, New York

GREAT SODUS BAY DREDGING INVESTIGATION

Summer 1967

Introduction

The following information pertains to predredged samples collected at individual stations from a small boat and composit samples from the Corp of Engineer's dredge Markham as it plied the full length of the channel being dredged. The post-dredge sample at the dumping ground was also an individual sample.

Predredge Samples

Predredge and samples were collected by means of a Peterson dredge.

The water samples were collected by means of an APHA DO sampler just above the bottom. Predredge samples were collected as follows:

	Station	Date
Mud	164	4-21-67
Water	164	4-21-67
Mud	9, 10, 11, 12	5-16-67
Water	9, 10, 11, 12	5-16-67
Mud	7, 8, 166	5-18-67
Water	7, 8, 166	5-18-67

Markham Samples

Dredged samples were collected at the intakes to the hoppers and the overflow from the Corp of Engineer's dredge Markham. The samples were collected as the dredge proceeded up and down the channel. Dredged samples were collected as follows:

Carry March Swall Hilly

i }

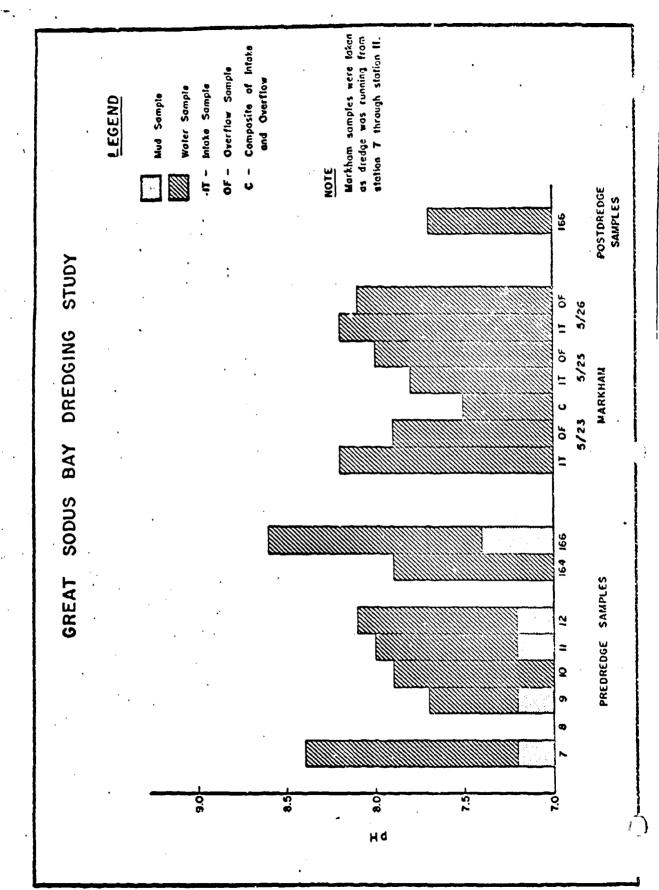
	Stations	Dates
Intake	7 thru 11	5-23-67
Overflow	7 thru 11	5-28-67
Composite*	7 thru 11	5-23-67
Intake	7 thru 11	5-25-67
Overflow	7 thru 11	5-25-67
Intake	7 thru 11	5-26-67
Overflow	7 thru 11	5-26-67

The composite sample consisted of two intake samples that were composited, The supernatant was considered as water and the residue remaining as mud.

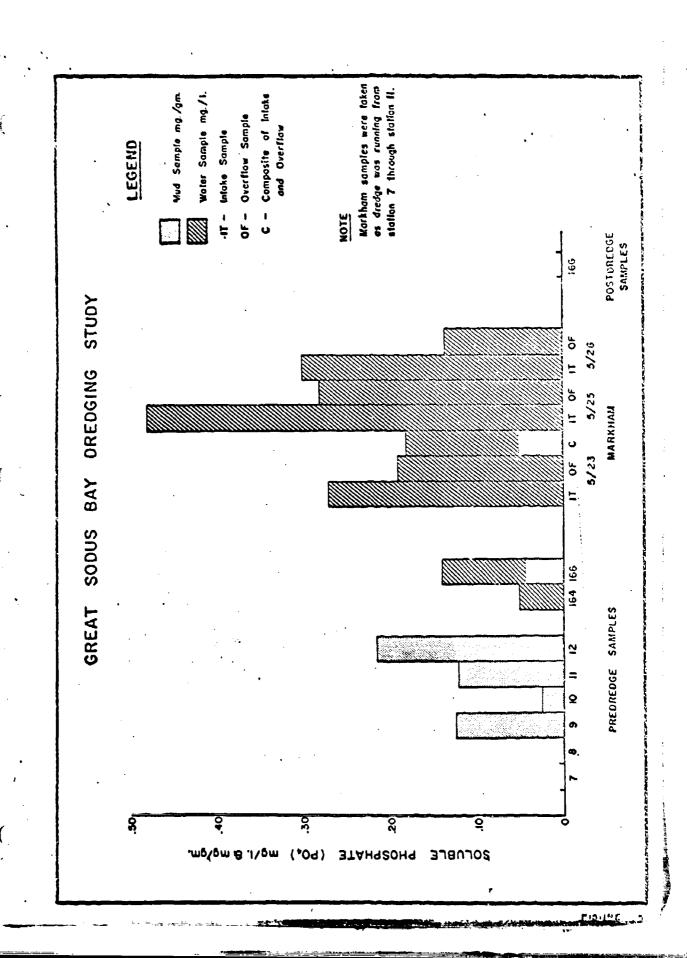
Post-dredging

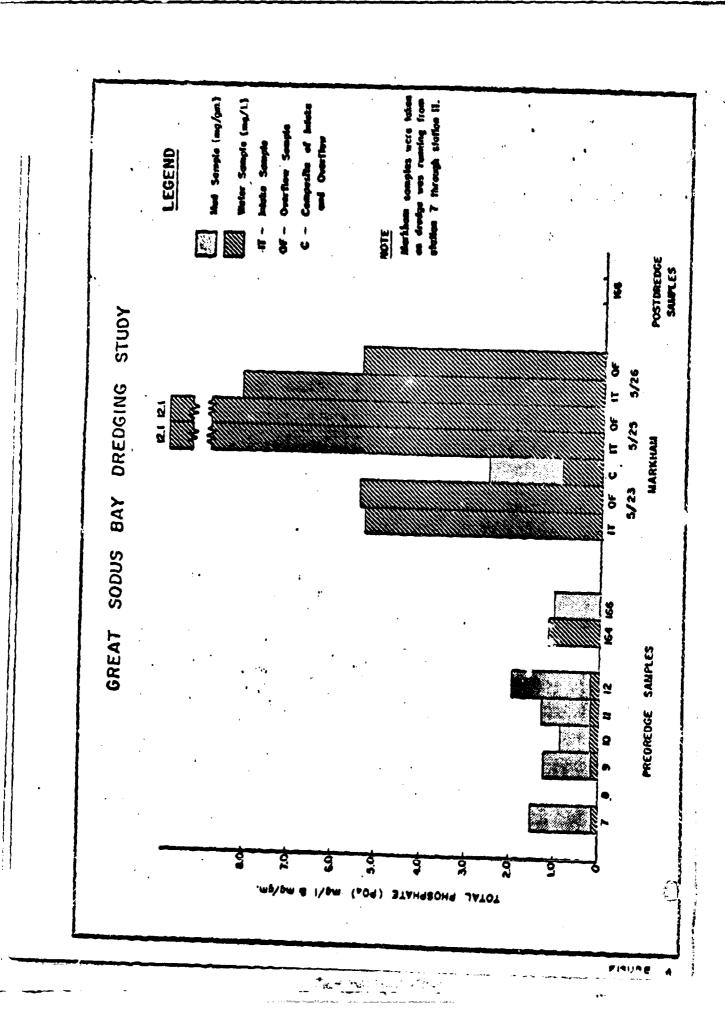
One sample of mud using a Peterson dredge and one of water by means of a PVC sampler were collected at Station 166 (dumping ground) on 10-17-67 from the Coast Guard Tug Objibwa.

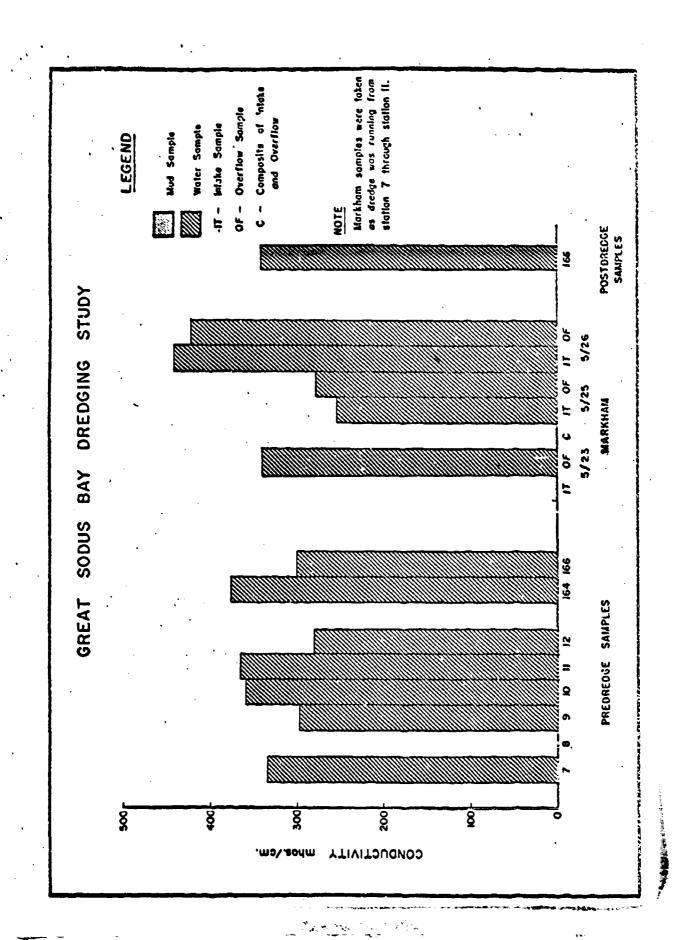
Analysis and Data

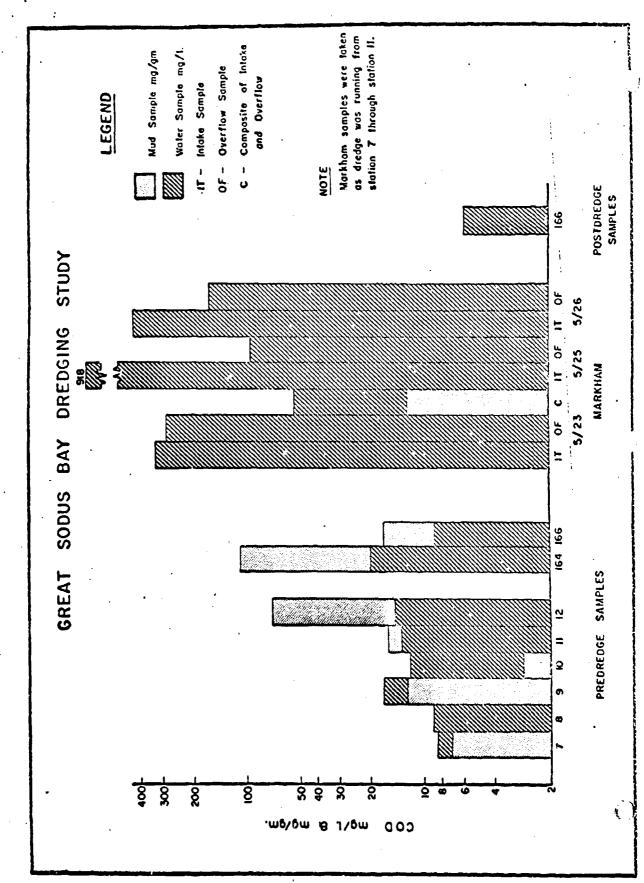

Figures 1 to 11, that follow, give a graphical display of some of the chemical data obtained from the examination of the mid and water. The graphical information is presented as follows:

Pigure	Parameter
1	Нq
2	Conductivity
3	con .
· • • • • • • • • • • • • • • • • • • •	Phosphates - Yotal
5	- Dissolved
6	Nitrogen - Total
7	- Nitrates
8	Solids - Total
9	- Dissolved
10	- Volitle, Total
n	Oxidation - Reduction Potential

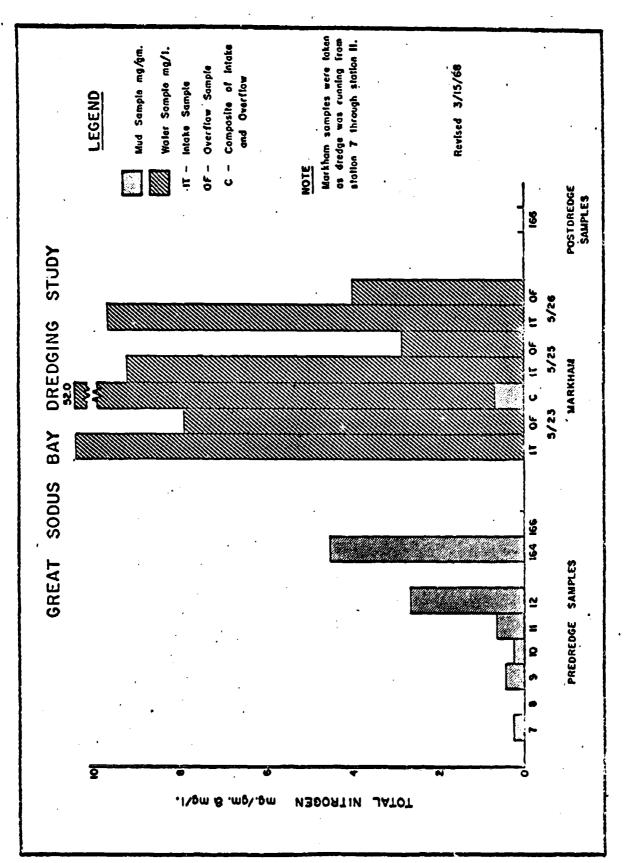

The analysis procedures as carried out at the Rochester Program Office are attached, see Appendix "A".

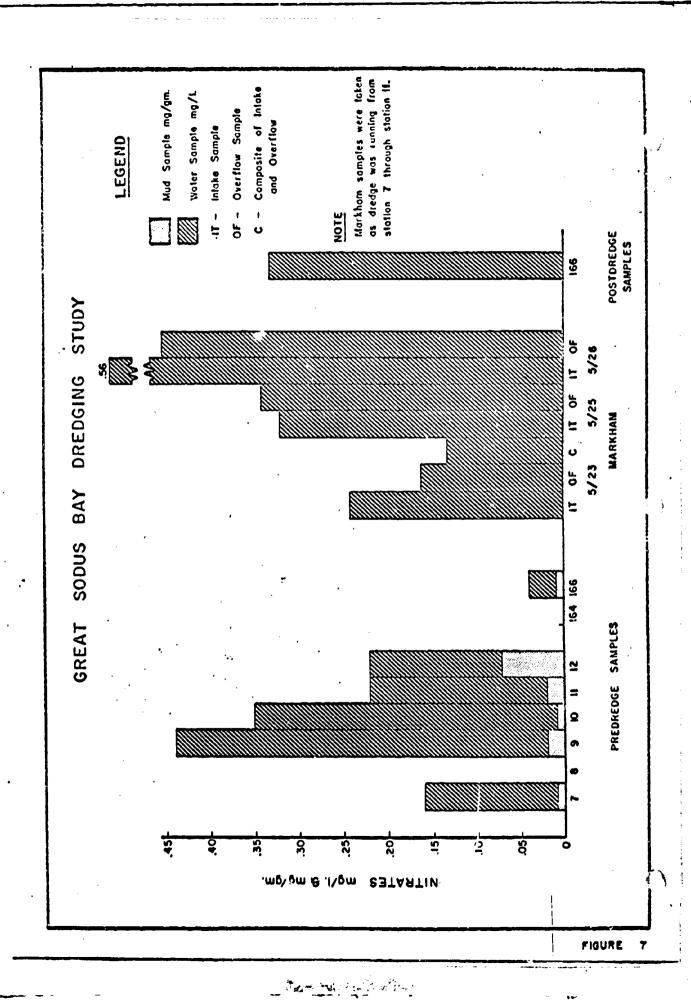

Comments relative to some of the parameters are as follows:

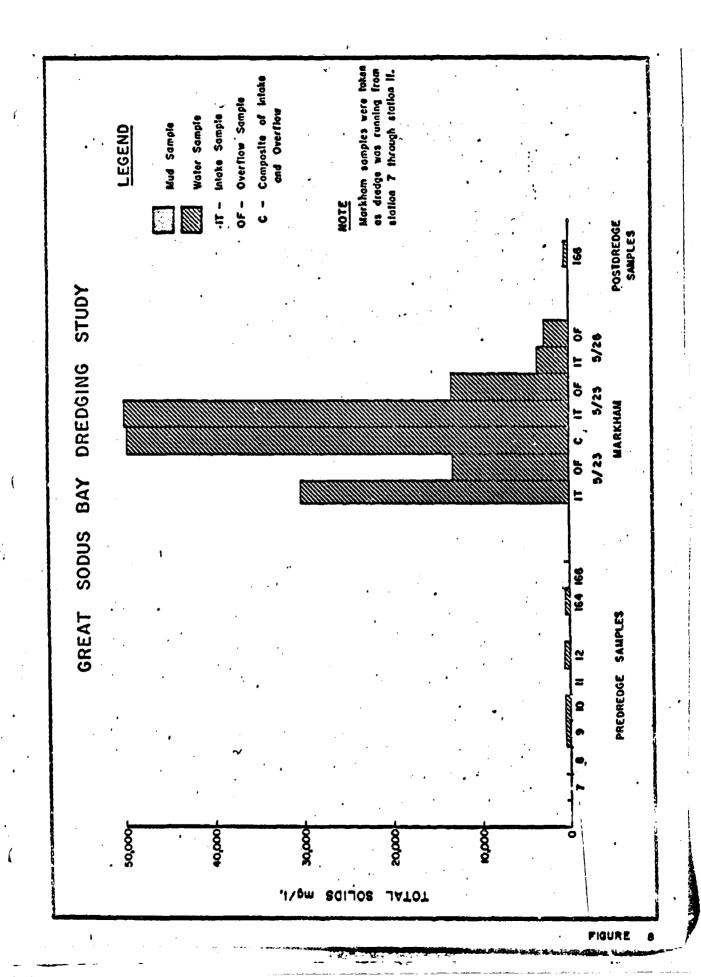

- But Marine and a few

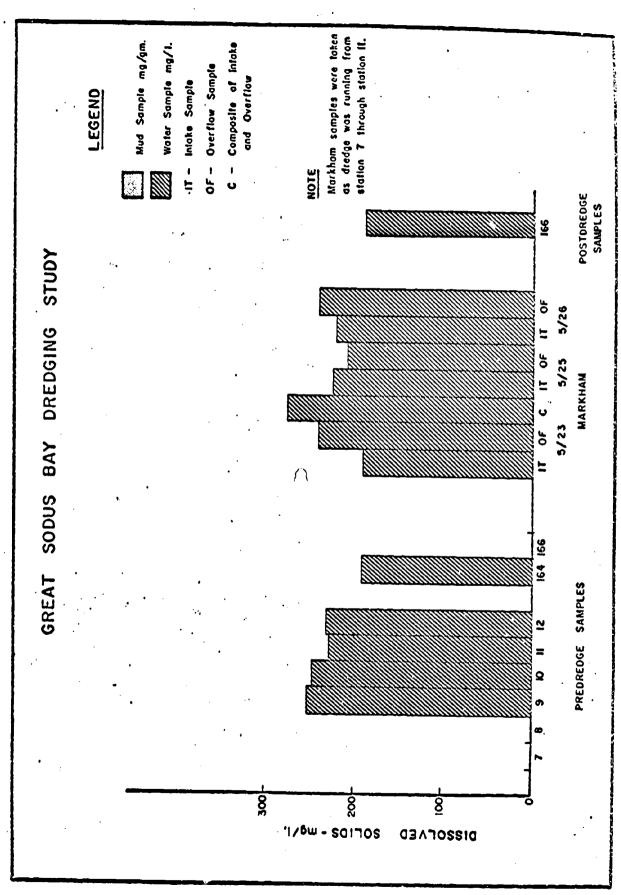


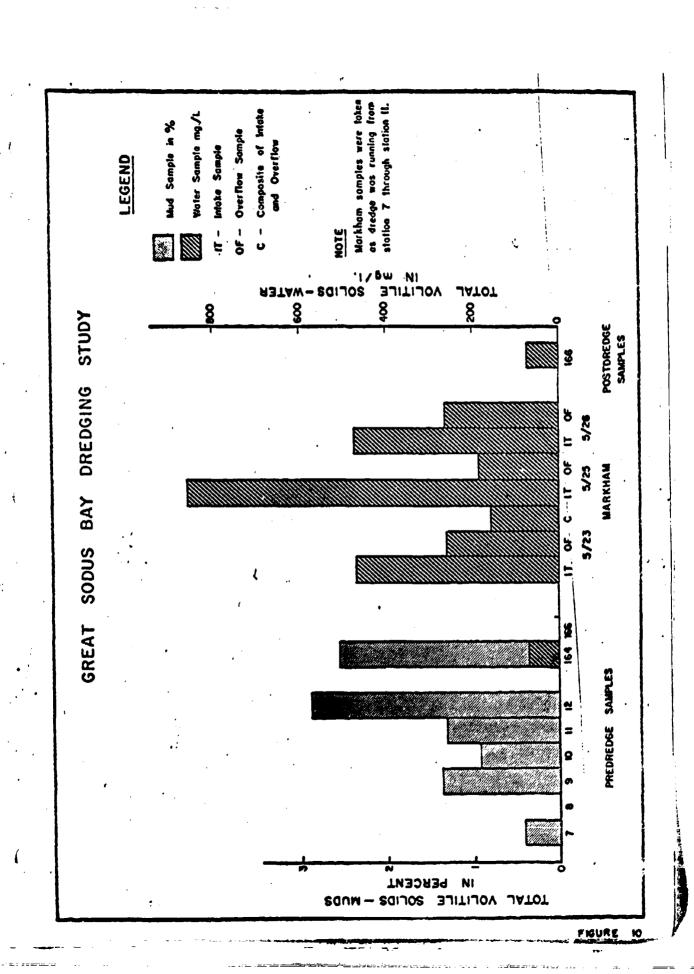
The second second








FINURE



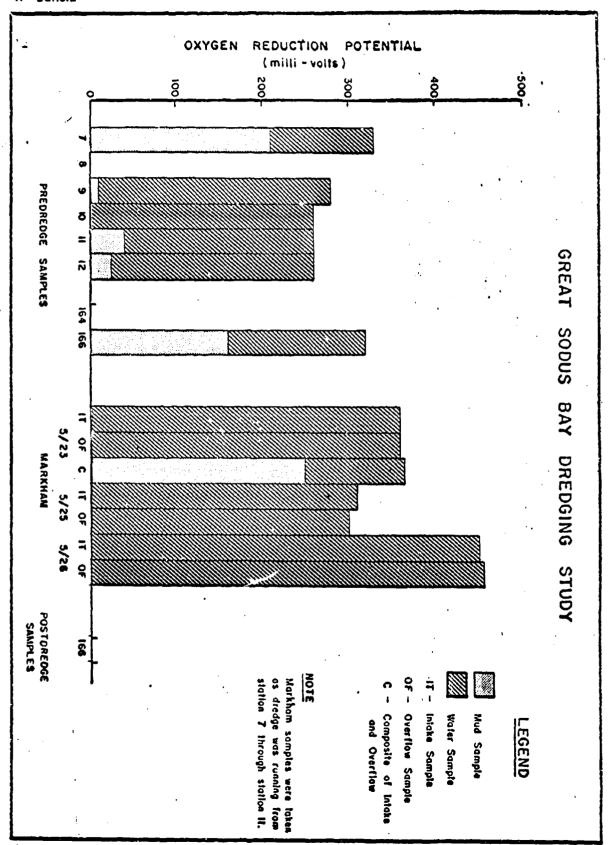

₹.

Figure 1			•
		•	
; ; ;			
3			
	;	,	
4			Ph

Comment

The water sample from Station 7 of the predredge samples because of its location could very well be influenced by the lake (166) water pH rather than the water flowing from the harbor. However, there is no explanation for the great difference between the spring and fall pH at Station 166 unless the spring blooms were a factor.

COD

Parameter

Z

It is quite obvious when the muds are mixed with water as on the Markham they impart a high COD to the sample water. That individual samples taken during predredging do not reflect the conditions to be expected from the mixing caused by the dredging operation. The results also show the excessive COD loading imparted to the receiving waters while the dredge is in operation via the overflow discharge.

Phosphate, Total

As in the explanation of the COD above. the phosphates also are present in the muds in greater amounts than in the water. The dradging operation for short periols apparently upsets the water/mud ratio of phosphates in that the liquid overflow and the liquid eventually discharged to the dumping ground contains considerable more phosphates than the overlying waters. Settlement and dispersion would soon return the mud/water phosphate ratio back to normal. However, the amount of phosphate being moved about may be adequate to promote algae growth in previously phosphate poor water.

Phosphate, Dissolved

The only comment is that it appears that settling of the sediment in the hoppers has through physical or mechanical absorption caused the soluable phosphate to be reduced or returned to the mids. Upon dumping, some of the phosphate could again separate from the sediment and be carried about by currents.

Figure Parameter

Comment

8

Total Sc'ids

Tt is quite evident dredging does increase the total solids of the waters being dredged. While the graphical display does not give information on water over the dredged or dumping area at the time of dredging, dumping photographs of other dredging operations show considerable amounts of solids in the water. Settlement and dispersion, however, in a matter of hours removes the visible solids.

Chemical data for each station is displayed in Table 1. With known amounts of dredged material the amount of BOD, COD, phosphates, etc. removed from the channel and deposited in the lake could be estimated.

Benthic Biology

Predredge mud samples provided little information as to Benthic life because of the samples collected. However, the only organisms found were tubificid worms.

Station No.	Number Tubificid Worms
7	2
9	1
10	2
11	ı
12	6
166	Žį.

As only a 100 ml sample of mud was provided for the biologist, the only conclusion reached is that pollution - tolerant organisms lived in the area sampled.

A post-dredge sample collected at Station 166 in October 1967 under the biologist's direction provided the following information:

Tubificidae	575/sq. meter
Pontoporea (scude)	113 sq. meter
Tendipedidae	25/sq. meter

Table I

ROCHESTER PROGRAM OFFICE Great Sodus Bay Dredging Study Chemical, Data

Predredged Information 1967

1	<u> </u>			,							
	4/21	5/16	5/16	5/16	5/16	5/16	5/16	5/16	5/16		
6ta. No. 164	164	9	10	11	12	9	10	11	12		
Depth (m) Mud	H ₂₀	Mud	Mud	Mud	Mud	H ₂₀	Н20	Н20	H20		
Perameters, °C											
Hq	7.9	7.2		7.2	7.2	7.7	7.9	8.0	8.1		:
Spec. Cond.	375					298	360	364	280		
alkalinity	100					104	102	102	102	:	<u>:</u>
turbidity	175					5.0	4.3	5.0	4.4		
DO		1	•	•						•	
200	1.6		·								
110	20	12.4	2.8	15.9	72.7	17.0	12.0	13.4	14.4		
N-Tot. Kje. 4.5		.47	124	.64	2.68				• .		
N-703		.02	.01	.02	. 07	<u>.</u> 444	-35	.22	.22		
N-Org.											
PO _L -Tot.	.15	1.23	.84	1.27	1.97	.13	.16	.16	.16		
-sol.	.05	.125	.025	.123	.214	.043					
Solids-Diss.	191					252	247	227	230		
-Susp.	. 9					9	لبل	191_	46		
-Tot.	200].		261	272	418	276		
- Vol. T. 2.6	72	1.37	-93	1.32	2.88						
c1.	24					24	24	25	25		
S10 ₂ 88%		87	92	90	ę 81 .						
Ce	64										
EH(mv)		10		40	25	270	260	260	260		
70 1.	В	3.4	3.7	3.3	2.4						

Table I (cont'd)

ROCHESTER PROGRAM OFFICE Great Sodus Bay Dredging Study Chemical Data

Predredging Information (cont'd) 1967

0												
Sta. No.	5/18	5/18	5/18	5/18	5/18	5/18		,	·	•		
Sta., No.	7	7	8	8	166	166						
. ,	_33vd	Hoo	Mud	H20	Mud	H ₂₀		· · · ·	,			
Parameters, °C						-						.·
Hq	7.2	8.4			7.4	8.6						
Spec. Cond.		334				300			·			
alkalinity	,						· · ·					
turbidity												
on												
BOD												
COD	7.1	8.5		9.0	1	.8.2						
N- Tot. Kje.	.27		·									
х-хо ₃	.01	:.16			.01	-04						
%-Org.	<u></u>											
PO _{1,} -Tot.	1.5	.11			1.0							
-so)、	.01				.043	.135						
Solide-Diss.												<u> </u>
-Susp.			<u> </u>									
-Tot.												
- Vol. T.	.429	4										
c1												
sio ₂	68.								,			
XX EH (MV)	210	330			160	320						and
ZH(mv)											·	
7•	5.7	3			1.1							

Table I (cont'd)

ROCHESTER PROGRAM OFFICE Great Sodus Bay Dredging Study Chemical Data

Markham Operation - 1967

												
Date	5/23	5/23	5/23	5/23		5/25	5/25	ì	5/26	5/26		
ta., No.	IN	OF	C-W	C-M	,	IN	OF		IN	Of.		
Depth (m)		<u> </u>		•								
Parameters', °C												
рH	8.2*	7.9*	7.5*			7.8*	8.0*		8,2#	8.1*		
Spec. Cond.		340				252	276		440	420		
alkalinity	117	118					• • •				:	
turbidity												
DO				•								
BOD												
COD	340	290	54			918	95		740	167		
N- Tot. Kje.			52	.63		9.15	2.8		9.6	3.9		
N-W3	. 24	.16	.13			.32	.39		.56	.45		
N-Org.				•								
201-Tot.	5.3	5.4	.83	2.51		12.1	12.1		8.1	5.4		
-801.	.27	.19	.18	.05	{	.48	.28		•3	.14		
Solids-Diss.	190	240	275			224	207		240	222		
-Susp.	29960	12780	49225			27726	13063		3536	1968		
-Tot.	30150	13020	48500		<i>:</i>	49950	13270		3776	2190		
- Vol. T.	470	260	155			857	185		476	264		
C1.												
510 ₂												
级 EH (MV)	3604	360*	365*	250*		310*	300*		450*	455*		
Zi(EV)												
70	6.7	.27	.08	377	11							
	ta., No. Cepth (m) Parameters, CC pH Spec. Cond. alkalinity turbidity DO BOD COD N-Tot. Kje. N-NO3 N-Org. PO4-Tot. -Sol. Solids-Diss. -Susp. -Tot. Cl. SiO2 GH EH (NV) EH(EV)	ta., No. IN Sepab (a) Parameters, C pH Spec. Cond. alkalinity 117 turbidity DO BOD COD N-Tot. Kje. 10.1 N-NO3 N-Org. PO4-Tot. 5.3 -Sol. 27 Solids-Diss. 190 -Susp. 29960 -Tot. 31050 -Vol. T. 470 Cl. SiO2 GH EH (MV) 3604	Tailer No. IN OF Sepath (a) Parameters, C PH 8.2* 7.9* Spec. Cond. 340 alkalinity 117 118 turbidity DO BOD COD 340 290 N-Tot. Kje. 10.1 7.9 N-W3 .24 .16 N-Org. PO4-Tot. 5.3 5.4 .27 .19 Solids-Diss. 190 240 -5usp. 29960 12780 -Tot. 30150 13020 -Vol. T. 470 260 Cl. SiO2 GA EH (MV) 360* 360* Zi(EV)	The companies of the co	IN OF C-W C-M Parameters, C pH Spec. Cond. alkalinity 117 118 turbidity DO BOD COD 340 290 54 N-Tot. Kje. 10.4 7.9 52 .63 N-NO3 N-Org. PO4-Tot. 5.3 5.4 .83 2.51 -Sol. -Sol. 27 .19 .18 .05 Solids-Diss. 190 240 275 -Susp. 29960 12780 49225 -Tot. 30150 13020 48500 - Vol. T. 470 260 155 C1. S102 EX EH (MV) 360* 360* 365* 250*	IN OF C-W C-M Parameters, C PH 8.2* 7.9* 7.5* Spec. Cond. 340 alkalinity 117 118 turbidity DO BOD COD 340 290 54 N-Tot. Kje. 10.1 7.9 52 .63 N-NO3 N-Org. PO4-Tot. 5.3 5.4 .83 2.51 -Sol27 .19 .18 .05 Solids-Diss. 190 240 275 -Susp. 29960 12780 49225 -Tot. 30150 13020 48500 - Vol. T. 470 260 155 C1. SiO2 EX EH (MV) 360* 360* 365* 250* Exi(EV)	Tai., No. IN OF C-W C-M IN Parameters, CC PH 8.2* 7.9* 7.5* 7.8* Spec. Cond. alkalinity 117 118 turbidity DO BOD COD 340 290 54 918 N-Tot. Kje. 10.1 7.9 52 .63 9.15 N-NO3 N-Org. POL-Tot. 5.3 5.4 .83 2.51 12.1 -sol. 27 .19 .18 .05 .48 Solids-Diss. 190 240 275 224 -susp. 29960 12780 49225 27726 - Tot. 30150 13020 48500 49950 - Vol. T. 260 155 857 Cl. SiO2 WM EH (MV) 360* 360* 365* 250* 310*	Tax., No. IN OF C-W C-M IN OF Depth (a) Parameters, C PH Spec. Cond. alkalinity 117 118 252 276 BOD COD BOD COD 340 290 54 918 95 N-Tot. Kje. 10.4 7.9 52 .63 9.15 2.8 N-NO3 N-Org. PO4-Tot. -501. 27 .19 .18 .05 .48 .28 Solida-Diss. 190 240 275 -Susp. 29960 12780 49225 -Tot. -Vol. T. 470 260 155 857 185 C1. SiO2 WX EH (MV) 360* 360* 365* 250* 310* 300* Exi(EV)	ta., No. IN OF C-W C-M IN OF Parameters, C PH 8.2* 7.9* 7.5* 7.8* 8.0* Spec. Cond. alkalinity 117 118 turbidity DO BOD COD 340 290 54 918 95 N-Tot. Kje. 10.1 7.9 52 .63 9.15 2.8 N-NO3 .24 .16 .13 .32 .39 N-Org. PO4-Tot. 5.3 5.4 .83 2.51 12.1 12.1 -Sol27 .19 .18 .05 .48 .28 Solida-Diss. 190 240 275 224 207 -Susp. 29960 12780 49225 27726 13063 -Tot. 30150 13020 48500 49950 13270 - Vol. T. 470 260 155 857 185 Cl. SiO2 WM EH (NV) 360* 360* 365* 250* 310* 300* Exi(xv)	ta., No. IN OF C-W C-M IN OF IN Parameters, C PH 8.2* 7.9* 7.5* 7.8* 8.0* 8.2* Spec. Cond. 340 252 276 440 Lividity DO BOD COD 340 290 54 918 95 440 N-Tot. Kjs. 10.4 7.9 52 .63 9.15 2.8 9.6 N-NO3 N-Org. PO4-Tot. -801. 27 .19 .18 .05 .48 .28 .3 Solids-Diss. 190 240 275 224 207 240 -Susp. -Susp. 29960 12780 49225 27726 13063 3536 -Tot. 30150 13020 48500 49950 13270 3776 C1. S102 WM EH (WV) 360* 360* 365* 250* 310* 300* 450* Exi(EV)	ta., No. IN OF C-W C-M IN OF IN OF Parameters, C PH 8,2* 7.9* 7.5* 7.8* 8.0* 8.2* 8.1* Spec. Cond. alkalinity turbidity DO BOD COD 340 290 54 918 95 440 167 N-Tot. Kje. 10.4 7.9 52 .63 9.15 2.8 9.6 3.9 N-NO3 .24 .16 .13 .32 .39 .56 .45 N-Org. PO4-Tot. 5.3 5.4 .83 2.51 12.1 12.1 8.1 5.4 -Sol27 .19 .18 .05 .48 .28 .3 .14 Solida-Diss. 190 240 275 224 207 240 222 Solida-Diss. 190 240 8500 49950 13270 3776 2190 - Vol. T. 470 260 155 857 185 476 264 EXICAL EXICAL SIO2 WM EH (MV) 360* 360* 365* 250* 310* 300* 450* 455* EXICAL	ta:, No. IN OF C-W C-M IN OF IN Of OF The Of

Table I (cont'd)

ROCHESTER PROGRAM OFFICE Great Sodus Bay Dredging Study Chemical Data

Post Dredging Information - 1967

					1	γ		·····		,	
10/1 # 10/1	7 10/17			;							
Sta., No.	6 166										1 .
Depth (m) Mu	d Hoo						·				
Parameters, 00											
Hg	7.7										
Spec. Cond.	340										!
alkalinity	490				٧٠.						
turbidity											
₩	10.8							·			
BOD											l i
COD	6.0										
N- Tot. Kje.		·] ;
N-103	.33										
N-Org.			1	These		}	in la	os.			
PO _L -Tot.			ı	Inlet		1		1			
-sol.			1	Overf		ł	ers				$\Big] \ \Big $
Solids-Diss.	190		1	Compos	}	ŧ			1		
-Susp.	10		С-М	Compo	sit of	mid					
-Tot.	200		:			:					j .
- Vol. T.	76				<u> </u>						
Cl.										<u> </u>	
sio ₂							<u> </u>		-		
Ca .								<u> </u>			_] _]
ZH(mv)							ļ		ļ ·		_
70	1.		16								

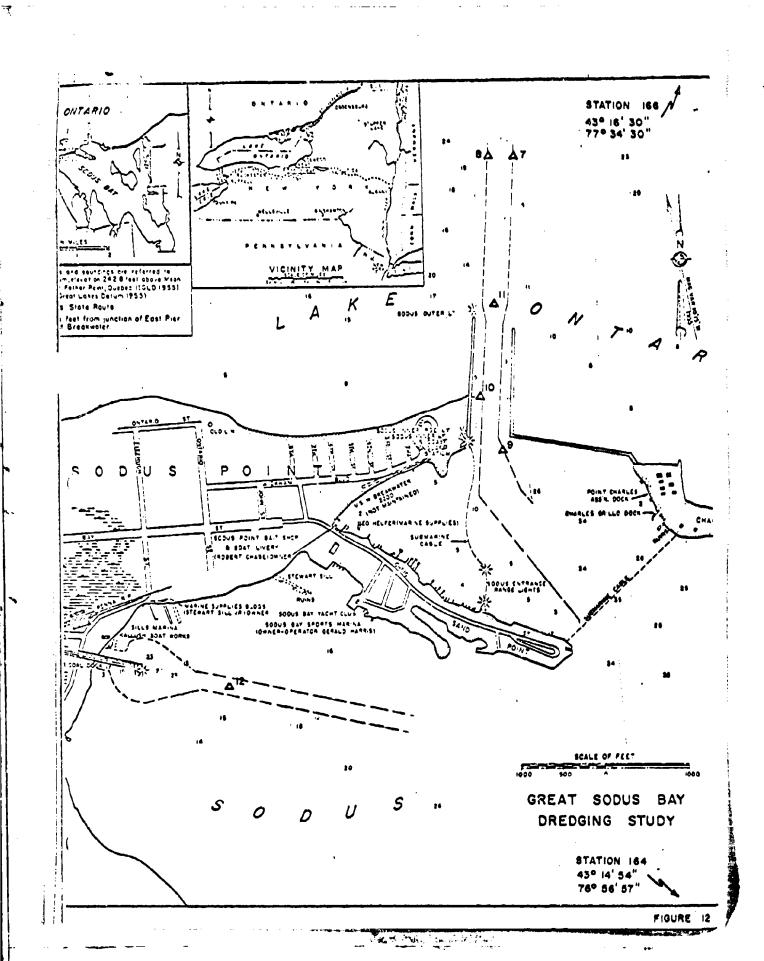

The number of Tubificidae found are indicative of a transitional condition, however, the presence of the clean water organisms (scuds) indicates the bottom is in fair condition and not grossly polluted. Such common organisms as Ankistrodesmus, Pediastrum, Scenedesmus, Sphaerocystis, and Coelosphaerium, were found in small numbers in the overlying waters thus indicating normal conditions for this time of the year.

TABLE 2

GREAT SODUS BAY DREDGING PROGRAM SAMPLING STATION DESCRIPTIONS*

Station	Description				
7	East side of approach channel 100' inside black can bouy #1, Sodus Bay				
8	West side of approach channel 100° inside red can bouy #2, Sodus Bay				
9	50 feet NNW of black can bouy #5, Sodus Bay approach channel				
10 (Mid-point of westside approach channel to Sodus Bay				
ij	Middle of channel 50 feet north of a line between bouys #3 and #4 at Sodus Bay entrance				
12	Midway between bouys #3 and #4 on approach channel to coal dock				
164	In center of Great Sodus Bay midway between Nicholas Point and the southern most point of Eagles Island (43° 14' 54" . 76° 56' 57")				
166	Corp of Engineers Spoil Area in Lake Ontario (43° 16' 30" - 77° 34' 30")				

^{*} See Figure 12

APPENDIX A 2

PILOT STUDY

Summer 1968

GREAT SODUS BAY
DISPOSAL OF DREDGINGS

U. S. DEPARTMENT OF THE INTERIOR
Federal Water Pollution Control Administration
Great Lakes Region
Rochester Program Office
Rochester, N. Y.

Correction made 9/16/68 - LRM TRM Updated 12/10/68 - LRM TRM

_ North Control of the Control of the Control

THEFE OF COMPENS

	Page No
Tuble of Contents	22
List of Tables	iii
List of Figures	iv
Introduction	1
Map of Study Area	2
Data Chemistry Pre and Post Dredge Information Lyman Samples	© 6 g).4
Biology	5
Conclusions	7
Recommendation	7
Tables	S
Figures	16

*****]}

LIST OF TABLES

Table		Page No.
· I	Chemical Analysis of Predredge Water	8
II	Chemical Analysis of Predredge	9
III	Chemical Analysis of U.S. Lyman Water Samples	10
IV	Chemical Analysis of Post Dredge Water	12
v	Chemical Analysis of Post Dredge Mud	13
VI	Bottom Fauna Distribution	14
VII	Description - Great Sodus Bay Pilot	15

LIST OF FIGURES

**

		Page No.
ı	Map of Great Sodus Bay Area -	2
Pı	re-dredge and Post Dredge Water and Mad Analysis	
2	Н	16
3	Specific Conductance	17
4	Turbidity	18
5	Dissolved Oxygen	19
6	Biochemical Oxygen Demand	20
7	Total Kjeldahl Mitrogen	57
8	Nitrates, N-NO3	22
9	Ammonia, N-NH ₃	23
ro	Total Phosphates - PO _{l4}	24
n	Soluble Phosphates	25
12	Solids - Suspended	26
13	Solids - Volatile Suspended	27
14	Chlorides	28
15	Alkalinity	29
16	Chemical Oxygen Demand	30
16 A	Chlorine Demand (Mud) U. S. Lyman Water Samples	31
17	pH and Alkalinity	32
18	Chlorides and Specific Conductance	33
19	Turbidity and Mitrates - N-NO3	34
20	Dissolved Oxygen and Biochemical Oxygen Demand	35
21	To al Kieldahl Hitrogen and Ammonia - N-WH2	. 36

Ô

LIST OF FIGURES (Cont'd.)

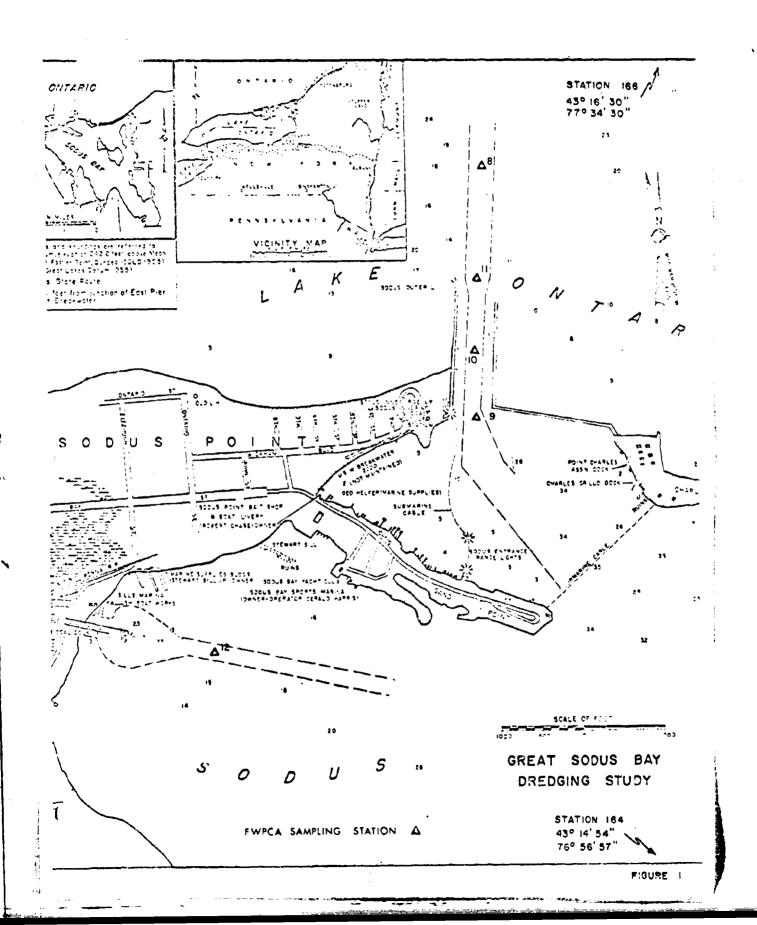
		rage no.
55	Phosphates - Total ($PO_{l_{\downarrow}}$) and Phosphates - Soluble	37
23	Solids - Suspended and Volatile Solids - Suspended	38

U. S. DEPARTMENT OF THE INTERIOR
Federal Water Pollution Control Administration
Great Lakes Region
Rochester Program Office
Rochester, N. Y.

GREAT SODUS BAY DREDGING STUDY

Summer 1968

Introduction


The following information pertains to pre during and post dredge samples collected by FWPCA and Corps of Engineers' personnel. Figure 1 shows the location of the stations sampled and Table VII describes each station.

The FWPCA water samples were collected from a small boat using PVC samplers and a Ponar or Petersen dredge for the muds. Both surface and bottom waters were sampled. The Lyman samples were taken during dredging near Station 10 from the inlet to and the overflow from the ships holding tanks. FWPCA personnel at the same time were sampling up and down stream of the dredge.

Predredge samples were collected (See Figure 1) on 6-28-68 at Stations 166, 11, 10, 12 and 164. The "during dredge" samples were taken on 7-11-68 from Stations 9, 10 and 166. The post dredge samples were taken on 8-1-68 at Stations 166, 8, 10, 12, and 164. A second set of post-dredge samples have also been collected (on 8-15-68) but the data, except for biology, is not yet available for this report.

All dredged material collected in the channel area was disposed of at a designated spoil area in Lake Ontario, Station 166.

Tent to the first than

The data collected pertains to those parameters asked for by the consultants. In the case of Great Sodus Bay such information as colliform and streptococci counts, oil, grease and "tracer" determinations and physical descriptions of the sediments are not furnished because of time and/or lack of personnel.

Chemistry

Pre and Post Dredge Data - Tables II. IV and V give information on water and mud samples. Figures 2 through 16 A are graphical illustrations of the parameters examined. The data as presented under this heading indicates changes resulting from the dredging activities. The loadings to the lake at the spoil areas, however, cannot be based on the material removed from the harbor area. The loadings are determined from the dredged material in the Lyman hoppers. Much of the suspended, dissolved and volatile material in the bottom muds is transferred via the dredging operation through the overflow to the surface waters and is carried out to the lake or redeposited some place along the channel and, therefore, cannot be considered as being deposited in the spoil area. From the chemical and biological standpoint little or no change has taken place at the spoil area between pre and post dredge sampling (post dredge mud samples could not be found in the rocky bottom of the spoil area). The dredging of the approach channel also did not materially change the characteristics of the water or bottom sediments. (Stations 8 - 11).

At the mid-pier station 10, very little change occurred in the overlying water, however, considerable change can be noted in the reduction of BOD and COD in the post dredged mud samples. This is also reflected in the

3

low silica content of the pre-dredge sediments and the reduced chlorine demand of the post dredge samples. This would indicate a substantial amount of organic or volatile material being removed.

Station 164 in Sodus Bay, not affected by dredging, was used as a base to determine changes in the source of the sediment and organic loadings to the channel. The pre and post dredge samples showed some variation in the over-lying water, but of such a nature the changes did not materially affect conditions at the dredging site. One exception might be phosphates. Phosphates were high in the muds prior to dredging. The low phosphates in the post dredge muds may have been caused by the leaching out of the chemical or the erosion of organic matter during the spring runoff.

Lyman Water Samples - Table III gives information on water and mud samples. Figures 17 through 23 are graphical illustrations of the parameters examined. It is pointed out that the Corps of Engineers dispose of about 30,000 cubic yards or about 6 million gallons of sediment each year in a designated spoil area.

The table and graph shows the realtive conditions of the tater surrounding the dredge and the water - sediment mixture in the hoppers. By use of inlet and outlet samples alone a true value of the hopper contents cannot be determined. However on the basis of the hopper contents and the quantity of materials, the chemical and organic load imposed on the disposal area can be approximated. Assuming an average current appeal of 0.3 My/sec. moving through a cross section of the spoil area and assuming the disposal of dredged material is uniformly distributed across the spoil area it is estimated that 30 million gallons of water

pass through the spoil area during each dumping cycle. It is not known how many dumps are made per day, but if it is assumed a minimum of ten dumps per day for six days take place, then some 1.8 billion gallons of water would be available to dilute the 30,000 cubic yards (6 million gallons) of dredged material. How well the material is mixed will depend on the physical makeup of the sediments, initial discharge dilutions, diffusion and turbulence.

It can be seen from the table and the graphs that the areage does cause a distinct change in characteristics of the channel water as the water and sediments are pumped into the dredge. Some of the parameters show a change, the BOD increased but is quite insignificant in view of the quantity of dissolved oxygen contained in the waters at the dumping ground. The nutrient (phosphate) content of the dredged water increases markedly over lake water nutrient content, however since the 30,000 cubic yards represent about 1500 pounds of displaced phosphates over a weeks time in moving water, then there is little likelihood of meaningful (time wise) enrichment to the spoil area water. Analysis for silica was not made on the Lyman samples, but the bottom material in the dredge area (Station 10) showed about 70% silica and 20% water, suggesting that the susperied material represented less than 10% of the dredged material. Visually the laboratory samples of the intake material appeared to be fine sand. On this basis the volatile material is well below 1% of the material placed over the spoil area. Less than 500,000 pounds of volatile matter was placed over the dredged area in the week of dredging.

Biology

Sediment samples for bottom fauna analysis were collected along with the chemical samples prior to, and after the dredging operations in

The state of the s

=

an attempt to assess the biological condition of the sediments and to determine if the dredging operations significantly altered the compositional structure of the benthic macroinvertebrate communities. Since chemical and biological samples were both taken from the same sediment grab, the biological data are necessarily only meaningful qualitatively.

Two faunal groups, the Chronomidae (midges) and Oligochaeta (worms) dominated the bottom fauna at each of the stations sampled, with scuds, caddisflies, fingernail clams and snails appearing occasionally in the samples. The oligochaetes were not separated into taxonomic groups, but the midges were identified to genus when possible.

A total of seven midge genera were found in the samples, with a maximum of five genera occurring at three stations. The most common midges collected, Chironomus spp., forms often associated with organically enriched sediments, were taken at all stations except at the spoil area in the open lake; here the intolerant forms Procledius spp.,

Tanytarus spp. and two unidentified forms were collected. Although the presence of Chironomus spp., in association with moderate oligochaete densities is suggestive of eutrophic conditions, the fairly diverse assemblage of animals including the intolerant midges Tanytarus spp.,

Procladius spp., Polypedilum spp. and Cryptochironomus spp., along with clean water scuds is evidence that the sediments are not excessively enriched.

The dredging operation had no measurable effects upon the benthos, discernible within the limits of sampling reliability. Because quantitative benthic samples were not taken from all stations before

_ There was a great with the

and after dredging, it is impossible to compare the existing data in meaningful manner. Nowever, the generic composition of the benchic fauna remained essentially unchanged at all stations after dredging.

Conclusion

From the dutu presented it is evident that prior to dredging the channel sediments at Suction 10 could be considered to be polluted or a pollutant. However, upon dredging the mids are so diluted that their strength is markedly reduced when pumped aboard the dredge. Upon being dumped, the strength of the residue is further reduced by the massive movement of Lake Onvario water across the spoil area. The pre and post dredging sampling at the spoil area and Station 11 indicate little chemical and biological changes take place to the detriment of the lake. Unless the volume and strength of the dredged material continues to increase it is concluded that the dredgings from the Great Sodus Bay channel do not constitute a major pollution hazard to Lake Ontario.

Recommendation

That the dredged material from the Great Sodus Day channel between Stations δ and 9 be allowed to be dumped at the Sodus spoil area in Lake Ontario.

I oldaT

ROCHESTER PROCESSION OFFICE Great Sodus Bay Dreaging Study Chemical, Data

				Predredge (Water) mg/l			June 1968						
9) of	6-28	6 -2 8	6 - 28	6-28	6-28	6-28	6-28	6-28	6-28	6-28			
Sta. No.	166	166	11	11	10	10	12	15	164	164	!		
ದಿಂಧರಿಸಿ (ಹ)	ςοT	Bott	qoT .	Bott	Top	Bott	Top	Bott	qcT.	Pott	;		
Parameters		·		!	<u>.</u>					<u>;</u>			
i Kg	8.2	8.0	18.1	8.0	7.95	8.20	8.0	7.95	8.0	7.9			
Spec. Cond. *	340	344	390	310	252	256	308	290	344_	31:11			
turbidity	0.60	.90	1.40	1.10	1.6	1.4	1.10	1.40	1.10	2.6			
D O	11.5	12.3	11.0	13.3	9.3	9.1	9.3	12.89	8.9	9.1			
GOE	1.0	1.2	2.4	1.4	~		1.7		1.8	1.1			
N-Tot. Kje.	.244	764	.432	.328	.588	.336	.396	:396	.504	.492			
N-NO3	.090	.280	.150	.220	.09	.26	.140	0.10	.080	.170			
N <i>−УН3</i> ⊃	.100	.560	.108	.100	.132	.08	.048	.060		.132	:		
-	.09	.09	.13	.10	.17	.12	.16	.16	.16	.20			
-Sol.	05	.07	.02	.0ó	12	.08	.11	.10	.12	.13			
Solids Susp	4	15	; :	: 5	18	122	3 .	17	8	8	į		
VolSusp.	3	7	i 1	5	3	; 3	3	4	. 8	6			
Alkalinity	98 .	102	94.0	104	100	100	96	102	97	100			
Chloride	26.5	26.5	26.9	26.3	27.0	29.2	25.3	28.1	25.8	24.8	:		
Iab #	52-D	-53-D		:		58-D	;						
		, ——			<u> </u>	:	/		; <u> </u>	1			
	* M1c	rombos	/cm			(:	·	· :				
	Ì	, ,	i	:		į	:	÷	:				
	{			:	i	:			!	!	:		
		:		;	!	:	:	;	:				
				-		ļ. ·			1				

Committee to the other

Table II

ROOKESTER PROGRAM OFFICE Great Sodus Bay Dredging Study Chemical, Data *

'Predredge (Mud)

-				m	g/Kg								 .
Date	6/28 1968	6/28	6/28	6/28	6/28	÷ .	: : :	•			1		
Sta. Xo.	166	11	10	12	164		i		;		:	-	
Depth (m)					!		!		<u> </u>			!	_
Parameters			 	!					1		•		_:
Нq			<u></u>				1		<u> </u>			;	
BOD	327	327	7.650	2.350	2,892		<u> </u>	!	¦ 			i	_:
COD		1	1	8,724			1	i		į į		, i .	: :
N-Tot. Kje.	}	(ر (دونورو		•		1	-	: : :	!	:	
n-no ₃		206	o01.	<u> </u>		i i	į		-	!			:
и-ин ³										!		-	-
PO ₄ -Tot.	1.621	1,973	33,238	3,764	4,224		; ;		!	i !			:
-Sol.	} ——	i	1	13.0	:		<u>.</u> !	1	· ·				
Solids Total%		ī —	1	39.2								:	
XXXX. Yol.	1.11	0.47	26.97	7.56	9-55	:	: !				!	<u> </u>	·
Oil-Grease	218	1,116	8,222	, 1,390	1,890). 		:		<u> </u>	:		
Ohlorine Demar	à o	0	11,53	59,515	10,989	1		:	. :	:	:	:	
% s ₁ o ₂	69.4	72.4	16.3	31.0	28.5	-		1 1 !		!		:	
% н ₂ 0	23.76	:22.1	69.36	60.85	61.51		ļ	:	:	f 1	:	:	
2			:	1	1						:	:	
				(:	ì			:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	_
Results given in			:	j		1		1		:			
mg/kg on Dry basi unless specified		; ;	<u>: </u>	<u>.</u>		 	- 	:					
otherwise.		:	<u> </u>	; ;					- :		:	:	()
		<u>\</u>	<u>:</u>	-	; ;	<u>:</u>						- :	
				<u> </u>	-	-	-		<u>i</u>				
	-		<u> </u>	İ	17	1						-;	

There was the little with the

Table III

ROCHESTER PROGRAM OFFICE Great Sodus Bay Dredging Study Chemical, Data

	i .		·		Lyman	Semple mg/l	es			July	1968	· 	
		7-11	7-11	7-11	7-11	7-11	7-11	7-11	7-11	7-11	7-11		
St	a. Xo.	166	166	10	10	9	9	Sam	ples f	rom Dr	edge		
De	gth (=)	Top	Bott	Top	Bott	Top	Bott	In	Out	In	Out	-	
Ps	rameters .							8	A .M .	12	Noon		
	Hq	8.7	8.5	8.4	8.5	8.4	8.1	7.7	7.6	7.6	7.8		
	Spec. Cond. *	360	358	350	340	340	350	314	330	358	350		
	turbidity	2.0	1.1	2.8	3.8	1.1	0.9	420	100	550	350		
	DO .	11.8	10.4	-,-	10.0	9.8	8.3	-					!
	BOD .	3.5	1.9	4.5	7.0	2.4	4.0	51	17	51.0	22.0	·	
í	N-Tot.Kje.	.380	.372	.504	.468	.240	.317	67.7	29.6	11.0	18.5		
``	N-NO3	.03	.06	-04	.04	.04	.05	2.75	6.90	1.90	3.15		
	N-NH3	.024	.048	.084	.048	.024	(.005	8.7	2.1	2.7	3.7		
	PO ₄ -Tot.	.22	.10	.26	.25	.15	.16	27.94	33.00	24.00	6.53		
	-Sol.	.17	.07	.12	.14	.09	.09	.50	.48	.54	.43		
	Solids			-	!	!			[!	i	•	
	-Susp	6	3	5	8	4	10	5 6 50	3203	6892	2705		-
	-Susp.Vol,	5	0	5	5	2 .	8	360	168	418	113		
	Chlorides ,	24.9	25.6	26.7	25.4	25.1	26.2	25.6	25.0	26.2	27.7		!
,	Alkalinity	108	100	98	100	96	98	104	110	124	100		
	Lab #	69-D	71-D	72-D	73-D	70-D	74-D	77-D	78-D	76-D	75-D		i
	Chlorine Demand			-				40	16	137	33		
		* MI	crombos	/cs									
				<u> </u>			10						

Table III A

ROCHESTER PROGRAM OFFICE Great Sodus Bay Dredging Study Chemical, Data

Lyman Samples (Mud)

					mg/kg			-				
De te	7/11/ 68	7/11/ 68	7/11/					·		,		
Sta. No.	166	10	9									
Depth (m)											İ	
Parameters .												
Hq												
Spec. Cond.								<u> </u>				
turbidity									! 			:
Bod	392	542	1,860	* * • • • • • •	<u> </u>	!					1	
GOD	2,090	750	2,272		-		<u> </u>	<u> </u>				
N-Tot.Kje.	141	197	161		{				1			
n-no ₃	32	74	110				1		§			
и-ин3								·				!
PO4-Tot.	727	944	453		-		•	<u> </u>			1	ļ !
-sol.	0.50	1.26	6.05			<u> </u>	-	<u> </u>		}		!
Solids							<u>.</u>	; }	1		:	
-Susp.					((1	<u> </u>		:			!
-Susp.Vol.					· ·	;		!	:		{ :	1
Total Solids %,	76.5	79.2	66.1		; (!		1			: : :	1	
Total Vol. %	0.74	0.89	2.85			i	! !		}	:	1	
% s10 ₂	70.5	72.3	5 6.5		j		1		l !		·	
% Water	23.54	20.83	33.89				!					
Chlorine: Demand	0	0	2,299							1	1	:
Oil & Grease	397	992	1,238							}		(
Grease									1	ļ !	1 .	i
					, 11							1
	-							_			معيميم	

Pro Maria

Table IV

ROCHESTER PROCRAM OFFICE

Great Sodue Bay Dredging Study

Chemical, Data

			Post Dredge (Water) August 196										
	pate	8-1	E-1	8-1	8-1	8 - 1	8-1	8-1	8-1	8-1	8-1		٠
Sta. Xo	•	166		8			10	12		164	164		
Dopsk (=)	100		O		<u> </u>	8	0	10	0	10		
Paramete	rs							i	٠.				
рH	•	8.35	8.30	8.20	8.10	8.30	8.40	8.40	8.45	8.40	8.20		
Spec.	Cond.*	300	304	310	314	318	322	328	330	330	330	! !	
turbid	lity	1.70	0.80	ం.ఓం	0.80	0.7	1.3	0.8	0.7	0.6	0.6		:
DO		9.7			8.4		8.5	8.7	7.8	7.8	8.8		
Bod		1.6	1.3	1.4	1.7	2.5	2.3	3.0	2.0	1.3	2.0		
X-Tot.	Kja.	.54	.54	.65	.65	.90	.91	.77	. 79	-74	.72		
x-x03	<i>:</i>	.04	.05	.04	• 34	.04	.05	.05	.02	1.08	.10	~~~	:
N-NH3	;	.06	.06	.05	.08	.10	.15	.05	.09	.05	.05		
PO4-T	otl.	.10	.10	.10	.12	.17	.18	.17	.15	.18	.17	!	
- Sc	1.	.06	.06	80.	.06		.11	.10	.11	.11	.10		
Solida	Susp.	3	3	5	3	. 35	2	5 .	3	3	2		:
Vol. Susp.	-book	2	2	2	3	8	1	2	0	3	, 0		
Chlo	oride '	27.1	: :26.7	26.7	26.7	25.0	25.0	25.5	25.0	26.0	27.1	,	
, Alks	linity	94	88	. 90	88	90	95	85	92	92	92	; !	<u>;</u>
Lab	#	97-D	: : 98-D	99 - D	100-0	101-1	102-D	103-1	104-I	105-1	D 106-D		
COD		8.1	9.0	11.1	43.0	15.9	23.4	36.3	· ·				
			;	:		!			: !			· :	<u>;</u>
		* M1	cromho	s/cm			!			:) 		
		-	:	: -}		!		1	!	!			
			,	:	:	12	.	;	; ;			:	

Table II

ROCHESTER PRODUCE OFFICE Great Soduc Boy Dredging Study Chemical, Data

Post Dredge (Mud) mg/kg

					mg/kg							
De te	3-1-68	8-1-6	8-1.	8-1-68	8-15	8-15	8-15	8-15				
Sta. No.	8	10	12	164	11	10	9	164		: ;		
Dapok (m)												
Parameters										:		
Нq								i			1	<u> </u>
BOD (4,150	687	2,758	3,764	776	571	950	5000		! . !		
COD	3,452	2,407	8,681	11,196	1,851	1,845	1,581	11,174		}	!	
N-Tot. Kje.	3,084	73	1,911	J ->,01	l 7 322	1.5	597	14,280		:		
N-N03	471	١	1	1	144	:		1,634		1		
и-ин 3					:	!				l i	: :	·)
PO4-Totl.	2,547	2,009	5,545	4,395	1,081	1,281	2,000	2,285			i	
-Sol.	33.9	4.27	5.72	32.0	1.30	1.06	4.20	7.50			:	
Total Solids %	53.1	70.2	34.9	28.1	75.1	75.2	70.2	26.4		:		
Total Vol	3.98	2.05	7.93	9.26	1.35	1.57	2.38	9.80		į		
Oil & Grease	1,452		1,463	1,596	∫ 53⊴	965	363	1,246		!		
Chlorine Dens	nd 10.73	5 569	10,40	1 10,33	20 570	664	: 1,139	13,750	:		!	
s ₁ 0 ₂ %	į	:		,				15.8				
% н ₂ 0	46.91	29.8	ų 65.0	8 71.13	: 3: 24 . 91	24.76	29.7	7: 73.6		; ;		;
£		:	:						:		:	
	1		1		!		:	:	•	:	:	
		:	:				:			:		
	1	; 							:		:	;
		i							;	-;		į)
		:	!	i	 -		<u> </u>		 _	- ; ;		
]	13	1	1		:			
		<u>;</u>	1	1	<u> </u>							-; ,

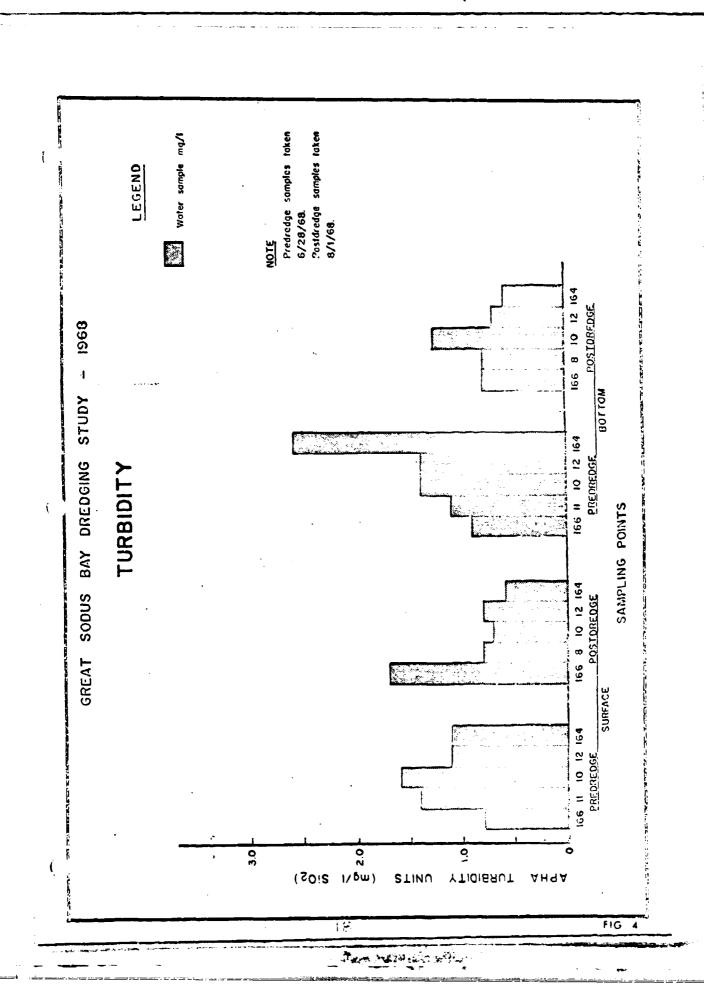
S A Bottom Found Distribution Tabla 6 Soboeriidae Truchoplera Commersis Hyalella Numbers of Organisms Unknown midges Olioschactes Tom tomsus outsouring Stations Proclodin 14 The state of the s

- 1968

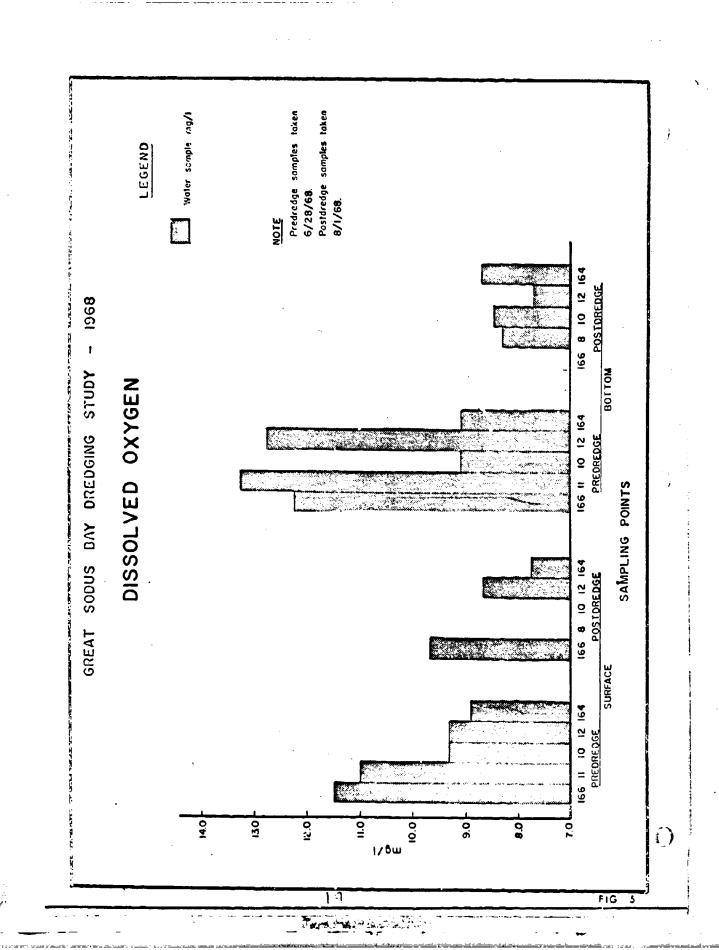
GREAT SODUS BAY DREDGING STUDY

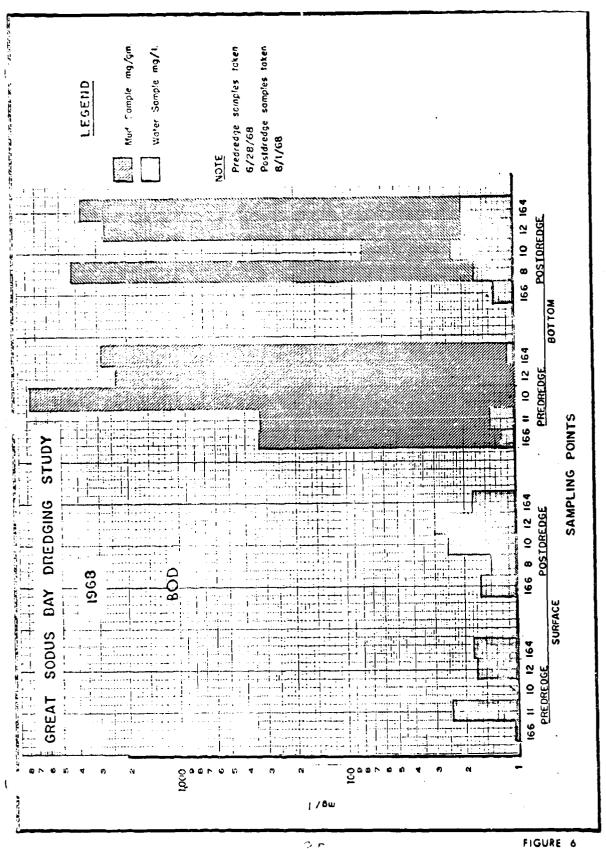
TABLE VII

GREAT SODUS BAY DREDGING PROGRAM STATION DESCRIPTIONS*

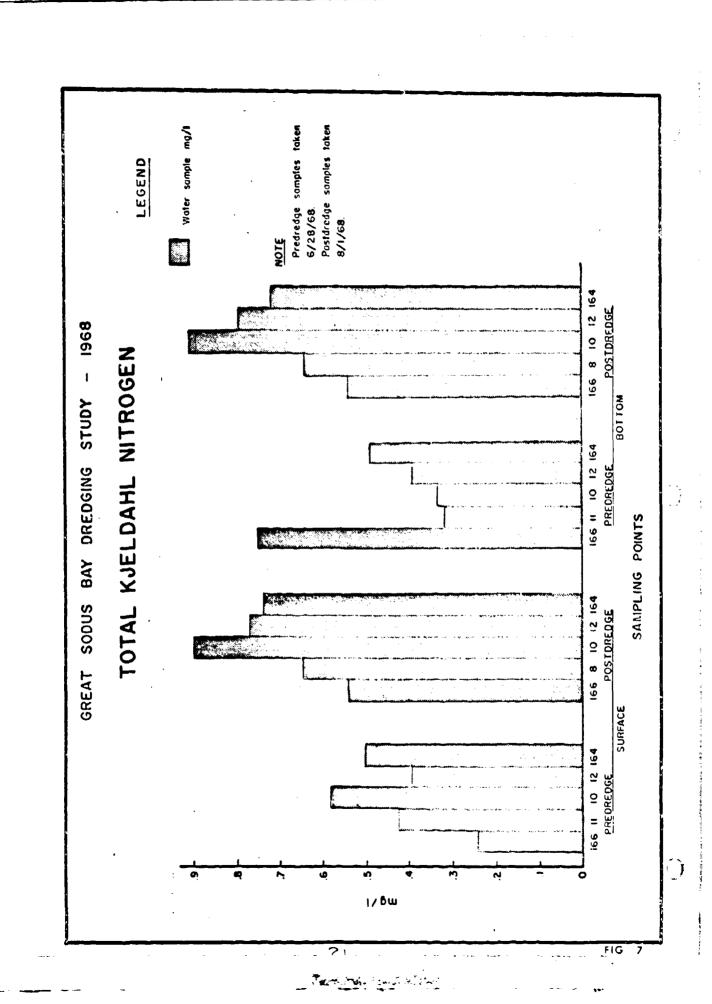

Station	Description
8	Midstream of approach channel 1,000 feet north of Sodus outer light
9	Fifty feet NNW of black can buoy #5, Sodus Bay approach channel.
10	Midstream of approach channel mid- way between the north and south ends of channel breakwaters.
n	Middle of channel 50 feet north of a line between buoys #3 and #4 at Sodus Bay entrance.
12	Mid-way between buoys #3 and #4 on approach channel to coal dock.
164	In center of Great Sodus Bay mid-way between Nicholas Point and the southern most point of Eagles Island. (43° 14' 54" - 76° 56' 57")
166	Corps of Engineers Spoil area in Lake Ontario (43° 16' 30" - 77° 34' 30")

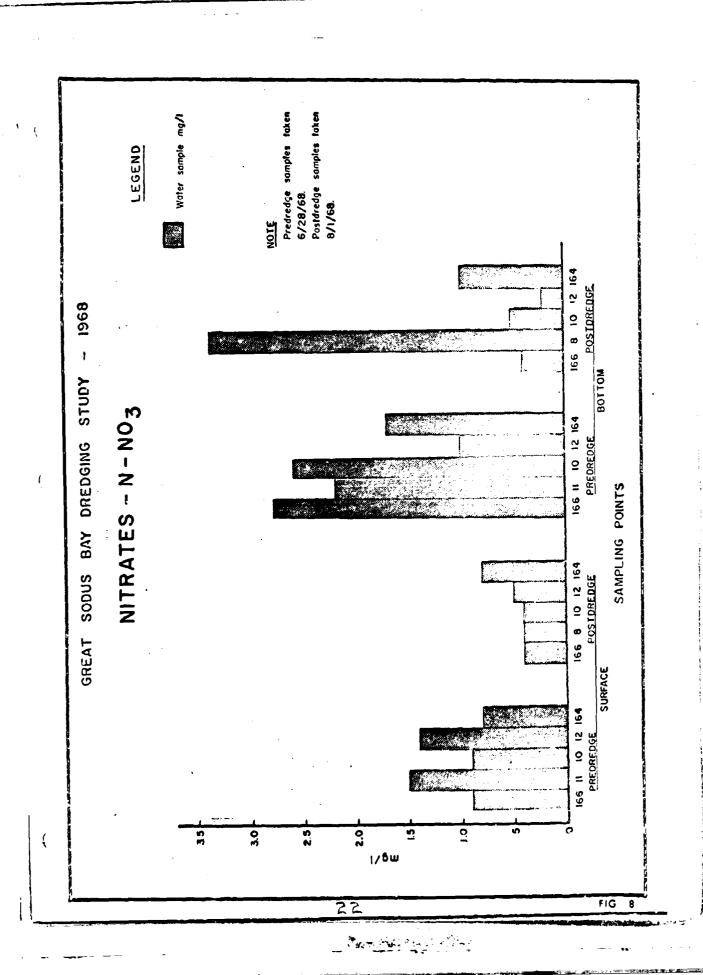
0

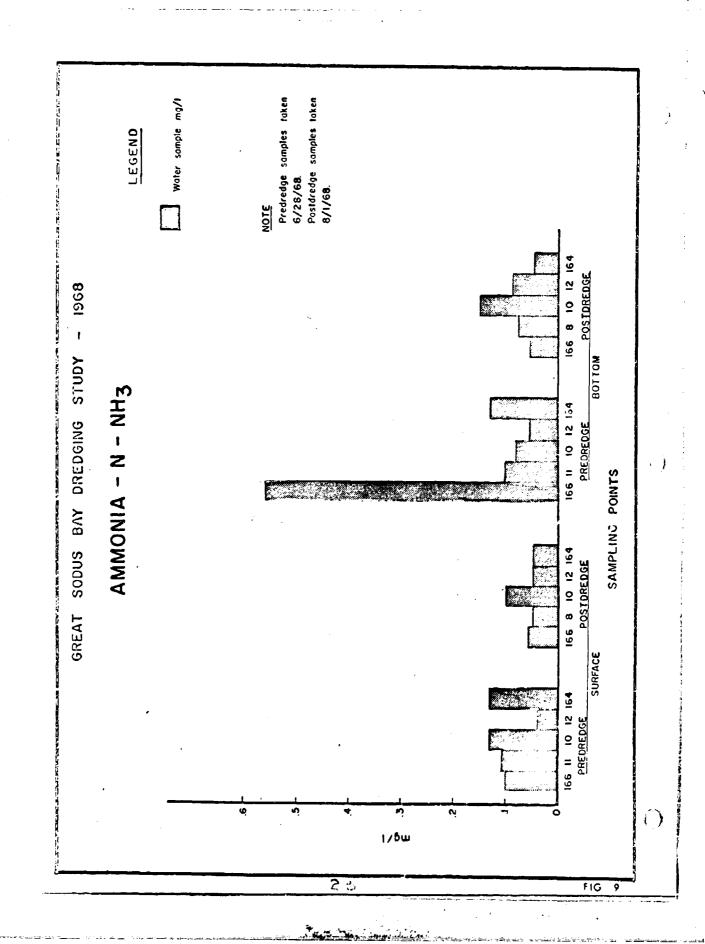

^{*} See Figure 1


Predredge somples taken 6/28/68. Postdredge samples taken 8/1/63. Water sample LEGEND NOTE 166 8 10 12 164 POS TOREDGE 1960 ſ STUDY **BOT TOM** 166 11 10 12 164 SODUS BAY DREDGING PREDREDGE ЬH SAMPLING POINTS 166 8 10 12 164 POSTOREDGE GREAT SURFACE 166 11 10 12 164 PREDREQUE 9.0 8.0 16

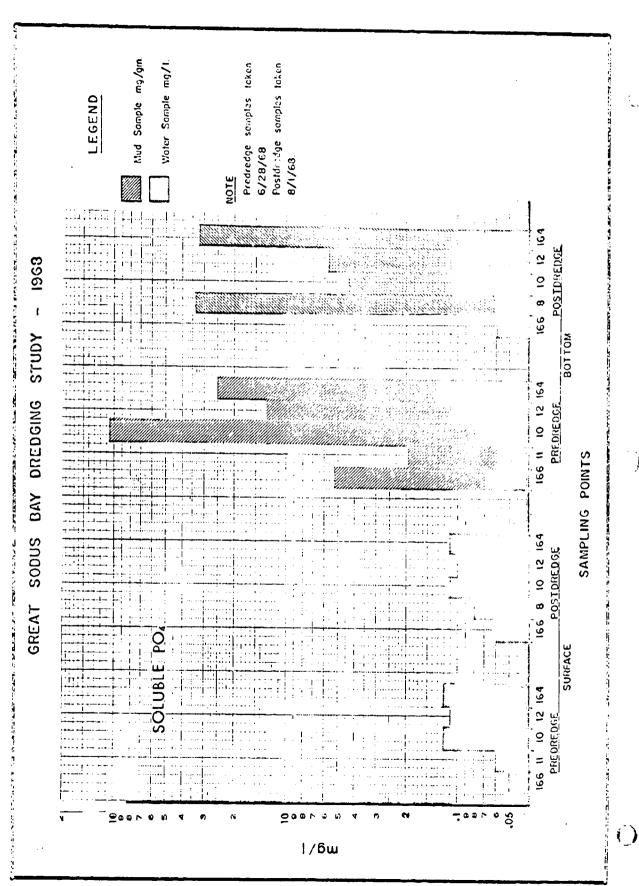
Predredge samples faken Postdredge samples taken 8/1/68. LEGEND Water sample 6/28/68 1968 POSTOREDGE SPECIFIC CONDUCTANCE GREAT SODUS BAY DREDGING STUDY BOTTON 166 11 10 12 164 PREOREDGE SAMPLING POINTS 166 8 10 12 164 POSCOBEDGE 166 11 10 12 164 PURDINEDGE 400 mo \ sonmoroim 300 250 E () FIG 3




T



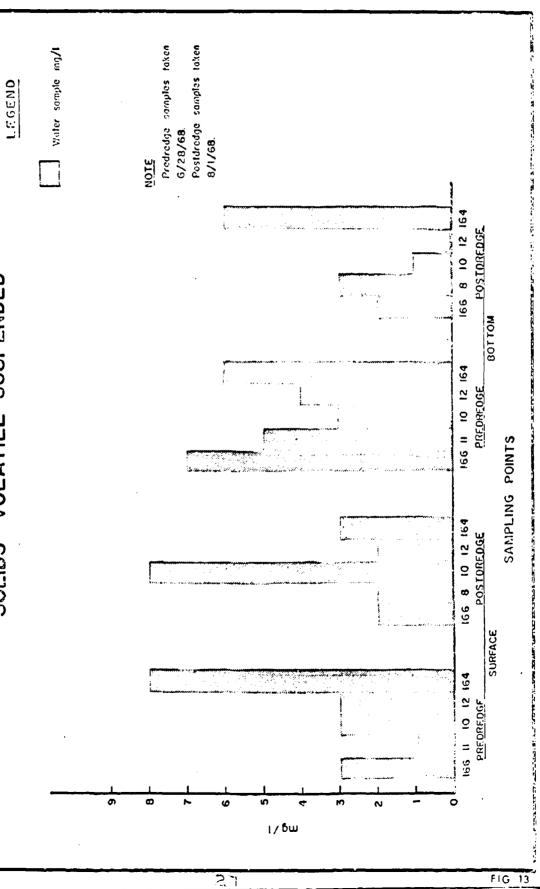
The tree of the second



Ned Sample mg/gm. Water Scriple ing/1. Predredge samples taken samples token Postdredge : 8/1/68. 6/23/68 8 10 12 164 STUDY 10 12 164 DREDGING SAMPLING POINTS 8 10 12 164 GREAT PREDREDGE 1/6w FIGURE 10

Mary State State of the

25


FIGURE 11

Predredge samples taken 6/28/68.
Postdredge samples taken 8/1/68. Water sample mg/l LEGEND NOTE 1968 GREAT SODUS BAY DREDGING STUDY SOLIDS - SUSPENDED 166 11 10 12 164 PREDREDGE SAMPLING POINTS 166 8 10 12 164 POSTORFOGE SURFACE 166 11 10 12 164 PREDREDGE 2 30 20 5 25 1/6ш FIG 12

Part of the second

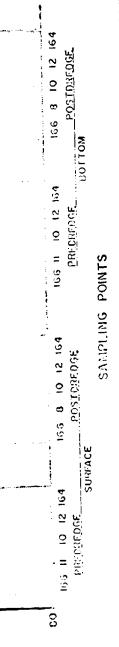
GREAT SODUS BAY DREDGING STUDY - 1968

SOLIDS - VOLATILE SUSPENDED

The desirable with a

()

Predredge samples taken 6/20/68. Postdredge samples taken 8/1/68. Water sample mg/I LEGEND POSTOREDGE **6**961 GREAT SODUS BAY DREDGING STUDY 166 11 10 12 164 PREOREDOSE CHLORIDES SAMPLING POINTS 166 8 10 12 154 POSTDREDGE SURFACE 156 11 10 12 164 PREDREDGE. 30 29 28 26 24 25 27 1/6w FIG

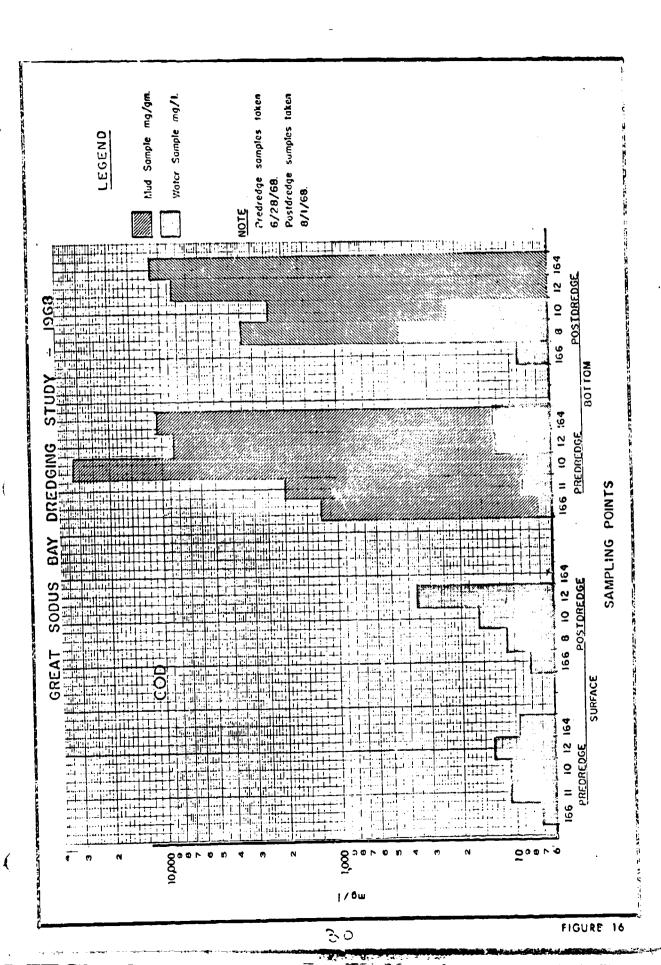

GREAT SODUS BAY DIREDGING STUDY - 1960

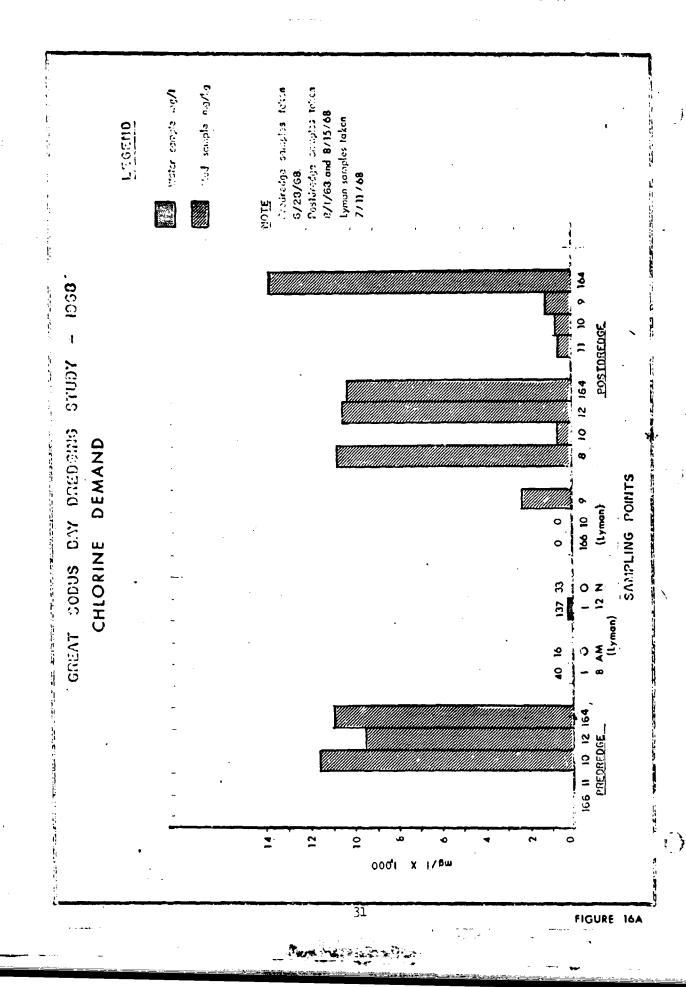
ALKALINITY

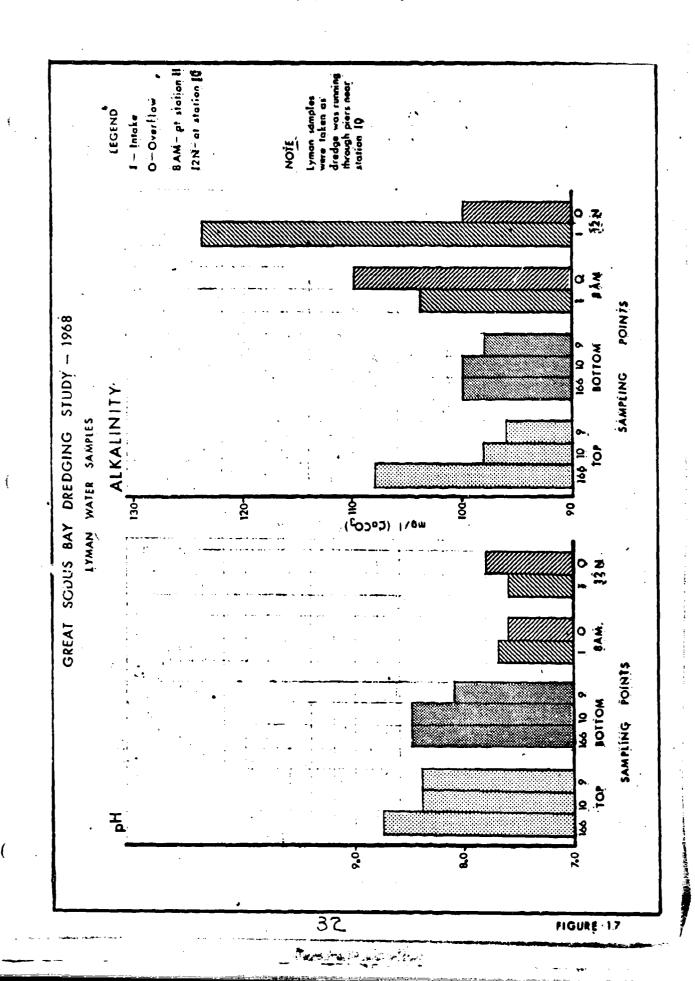
LEGEND

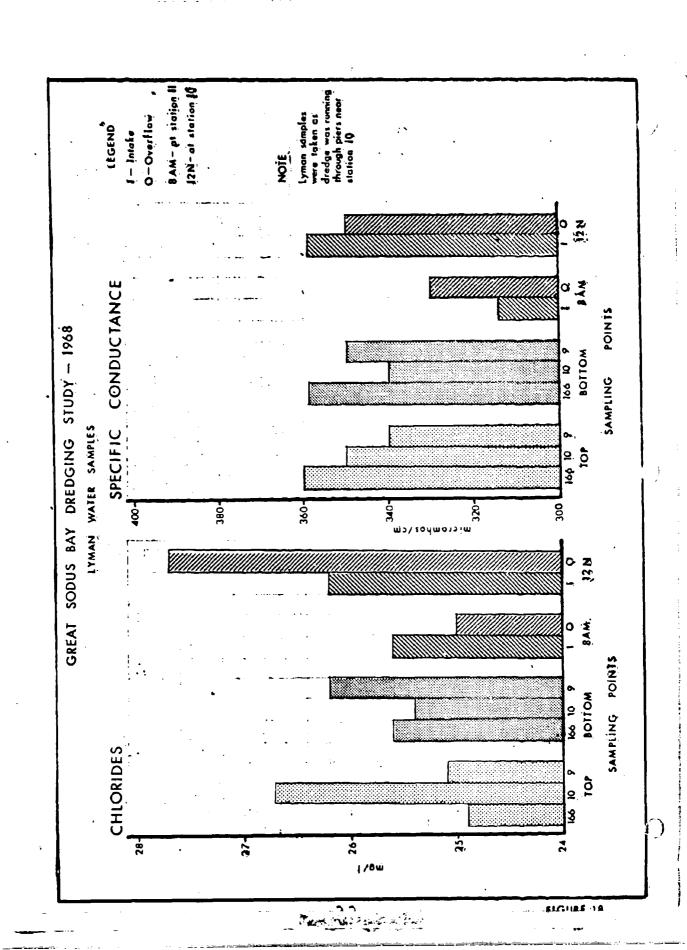
NOTE
Predredge samples taken
6/26/68
Postdredge samples taken
3/1/68

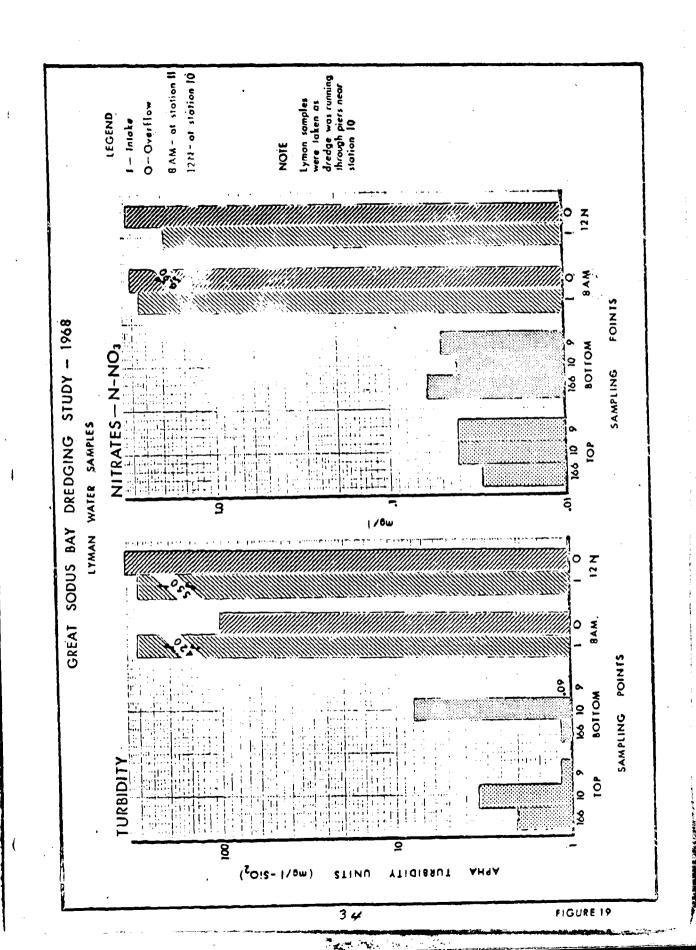
9

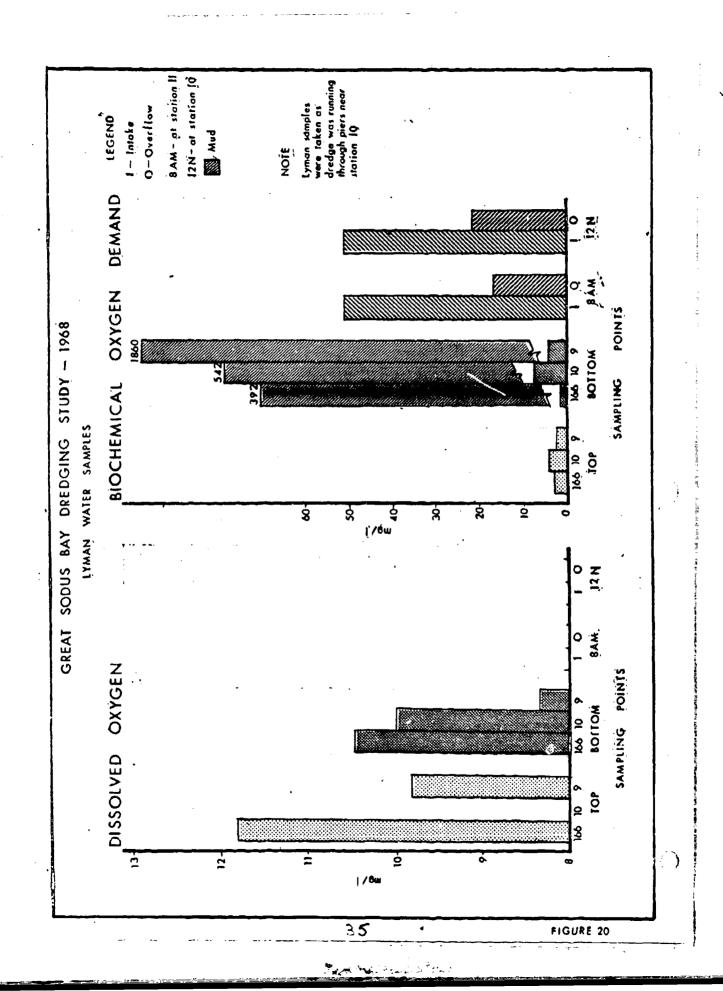


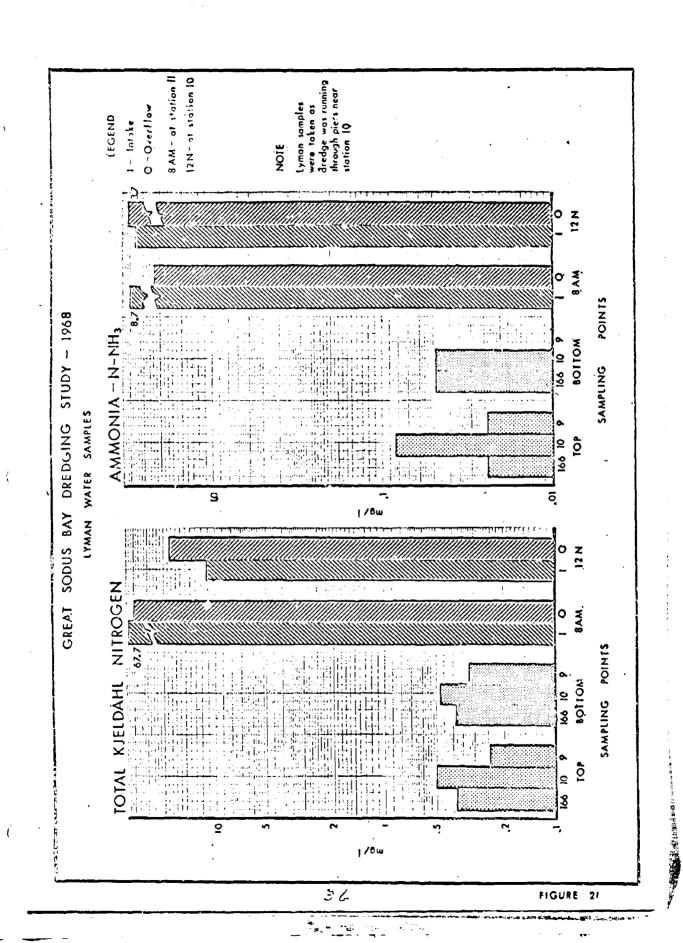

0 1/6w

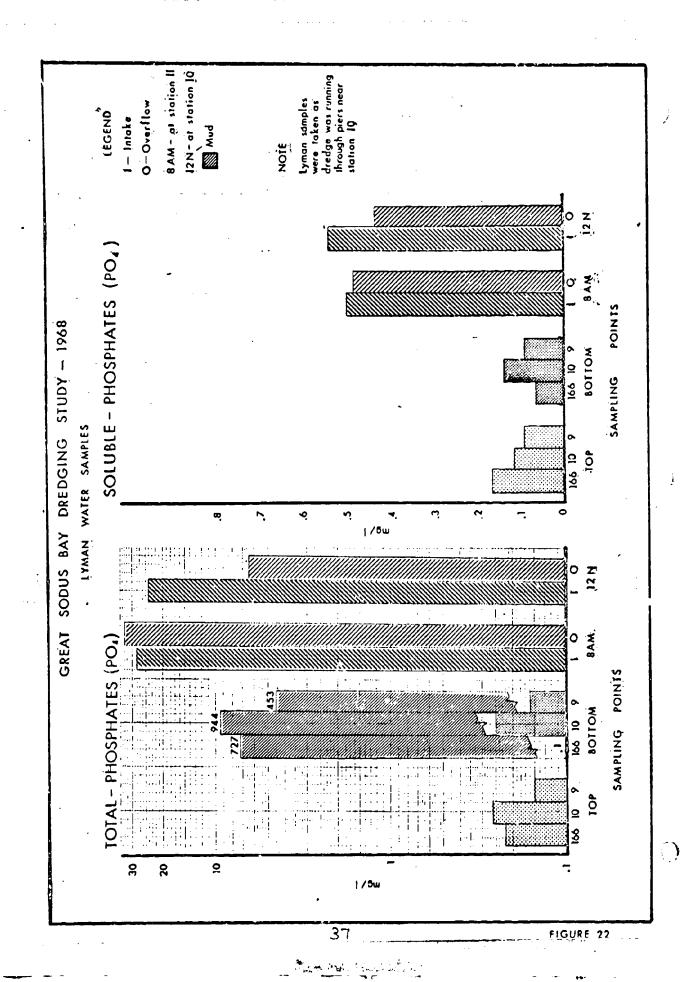

00


(COCO3)


()







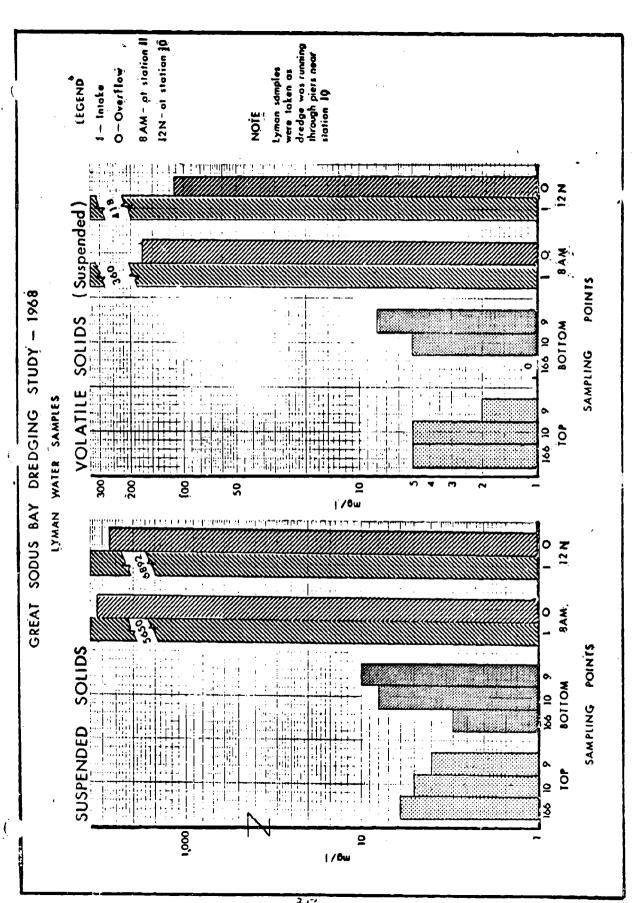


FIGURE 23

APPENDIX AS

INTERIM SUMMARY
of
BUFFALO HARBOR DREDGING EFFECTS INVESTIGATION

U. S. DEPARTMENT OF THE INTERIOR FEDERAL WATER POLLUTION CONTROL ADMINISTRATION CLEVELAND PROGRAM OFFICE

March 1968

Termina tula selle

INTERIM SUMMARY OF BUFFALO HARBOR DREDGING EFFECTS INVESTIGATION

March 1967

INTRODUCTION

This interim summary of the Buffalo Harbor dredging investigation includes data on in-place materials (sediment and water) sampled prior to dredging of the Buffalo Harbor, Buffalo River, and Black Rock Channel. Summary data on the concentration of constituents present in the inflow and outflow of the hopper dredges during dredging of the Buffalo Harbor and Black Rock Channel are also included.

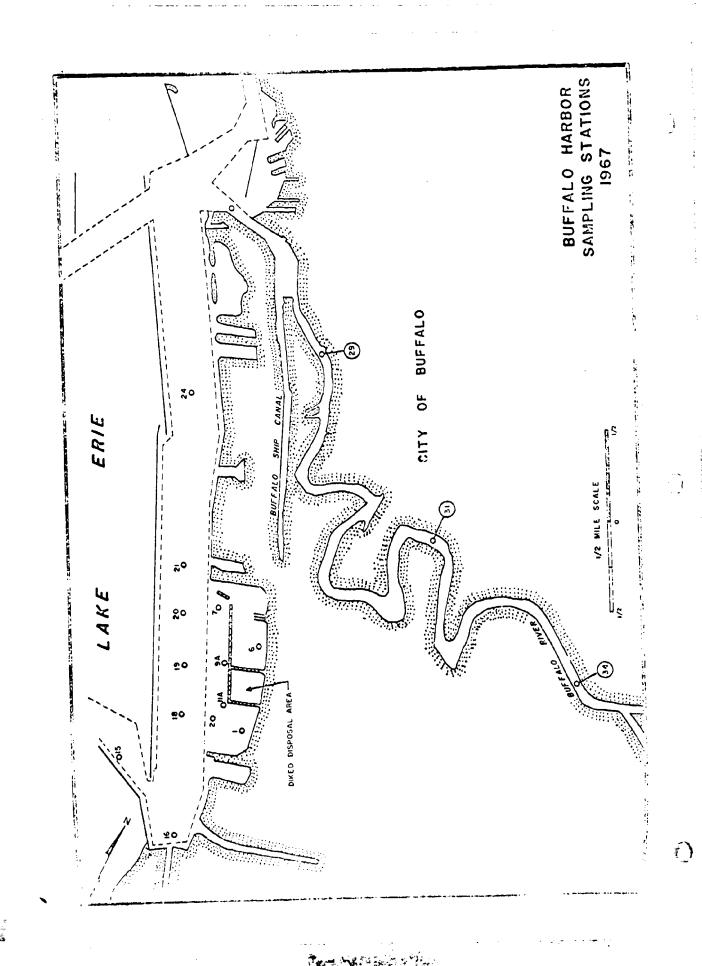
The investigation in the Buffalo Harbor is directed towards determining the quality characteristics of the materials dredged, local effects of dredging in the dredging areas, and evaluating the efficacy of depositing the materials dredged from the Buffalo River into a sector enclosed by a dike constructed of steel plant slag.

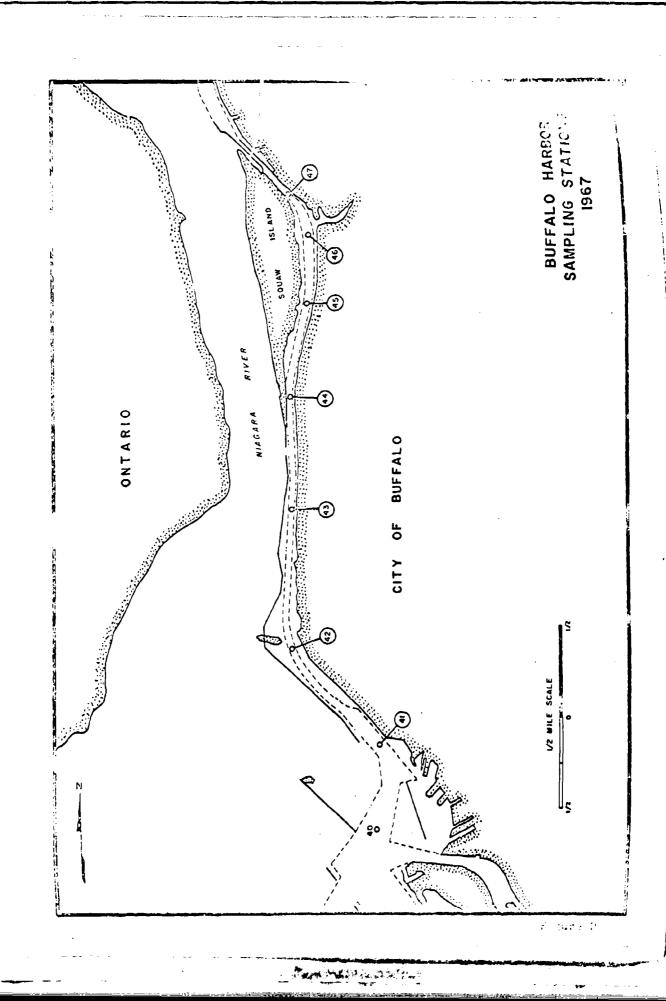
It is not planned to investigate the effects on Lake Erie from the disposal of Buffalo Harbor dredgings into the lake. Such a study in this area would be inconclusive since any effects would largely be obscured by wastes from Bethlehem Steel and other industries currently entering Lake Erie in the immediate vicinity of the dump area.

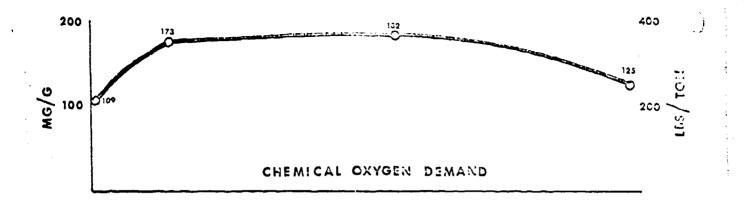
Unavoidable delays in the construction of the dike severely limited the extent of sampling during and following completion of the Buffalo River dredging. Although some very preliminary indications of the suitability of disposal within the dike area have been obtained,

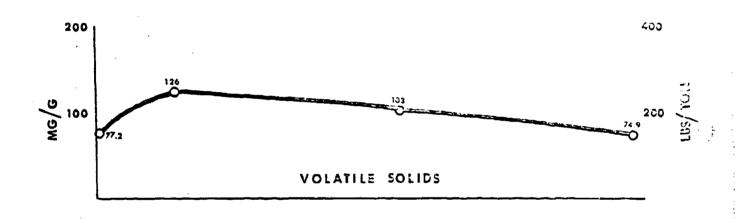
í)

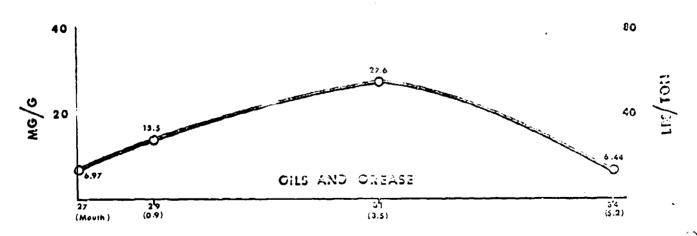
data to be collected prior to 1968 dredging are needed to reach more valid conclusions.

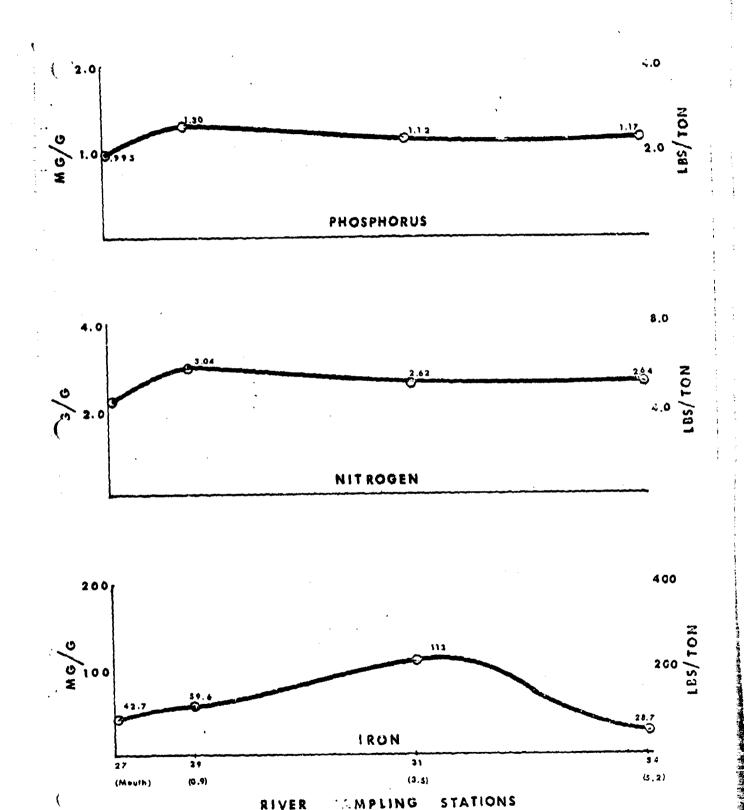

This summary is based principally upon sampling of bottom sediments and overlying water in the Buffalo River, Harbor and Black Rock Channel. Relatively few in-place sediment samples were collected in the Buffalo River. It is planned to more definitely determine the characteristics of these sediments from samples collected of the dredged material loaded on barges. These samples are currently being analyzed. Figures 1 and 2 show the sampling points.


Sediment Analysis


Figures 3 through 6 show the results of sediment analysis as value profiles for the river, harbor, and the Black Rock Channel.


Chemical Oxygen Demand


The Chemical Oxygen Demand (COD) of the harbor and channel is shown in Figures 3 and 5. The COD exceeded 100 mg/g at the south end of the harbor and decreases towards the north end of the harbor. Ferrous iron wastes from the Bethlehem Steel and Hanna Furnace plants most probably account for the higher concentration at the south end of the harbor. The mouth of the Buffalo River is at the extreme north end of the outer harbor. The flow from the river moves north into the Niagara River and the Black Rock Channel. The increase of COD in the sediments from the south end to the north portion of the channel most probably reflects the inputs from the Buffalo River together with inputs from Scajaquada Creek which enters at the north end of the channel. The maximum COD (218 mg/1) was found at the north end of the channel.

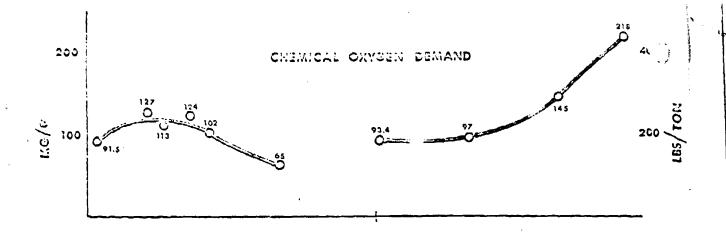


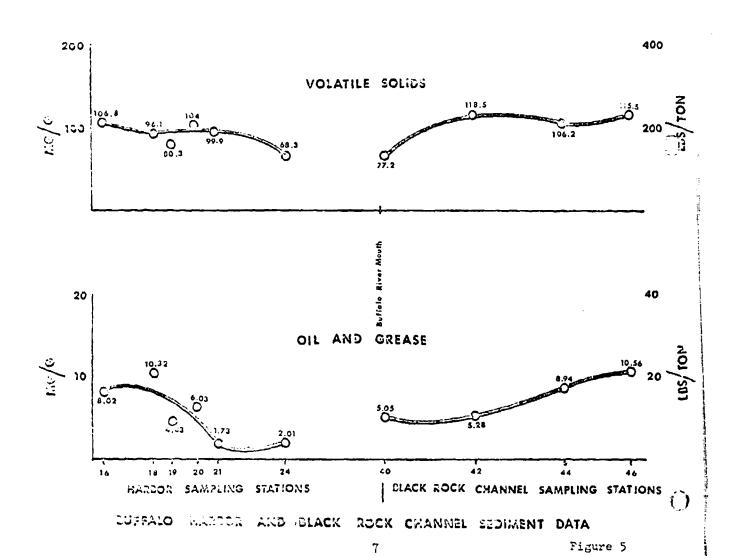
BUFFALO RIVER SEDIMENT DATA

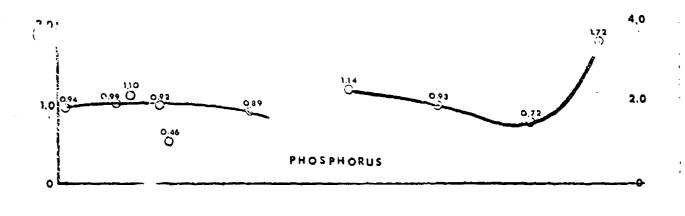
N - Station No.
(N)=Milds Above Mouth

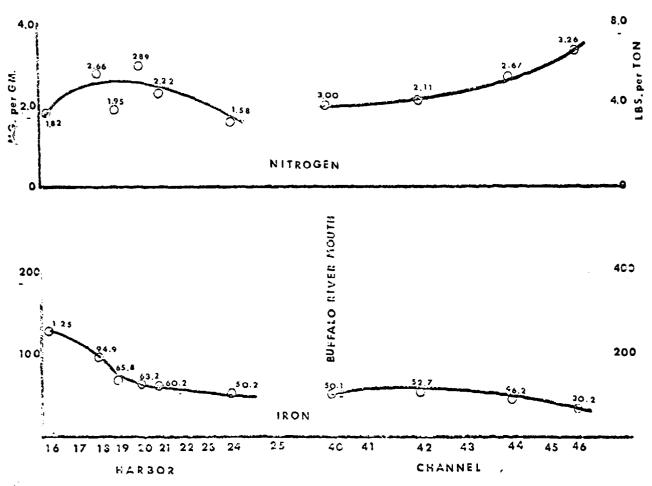
Pigure 3

RIVER SEDIMENT DATA


6


The state of the


N-Station No.


(N)-Miles Above Figure 4

BUFFALO

CHEMICAL CONCENTRATIONS

Figure 6

The limited Buffalo River data indicates that the COD of the sediments is lowest at the upstream limit of the dredged sector and increases downstream to 180 mg/g in the vicinity of several industrial waste discharges. It decreases markedly at the river mouth where significant dilution with lake water occurs.

Volatile Solids

The concentration of volatile solids in the sediments (Figure 3) followed a distribution pattern similar to that of the COD. The maximum concentrations were 107 mg/g at the south end of the harbor, 119 mg/g in the channel and 126 mg/g at the lower end of the Buffalo River.

Oil and Grease

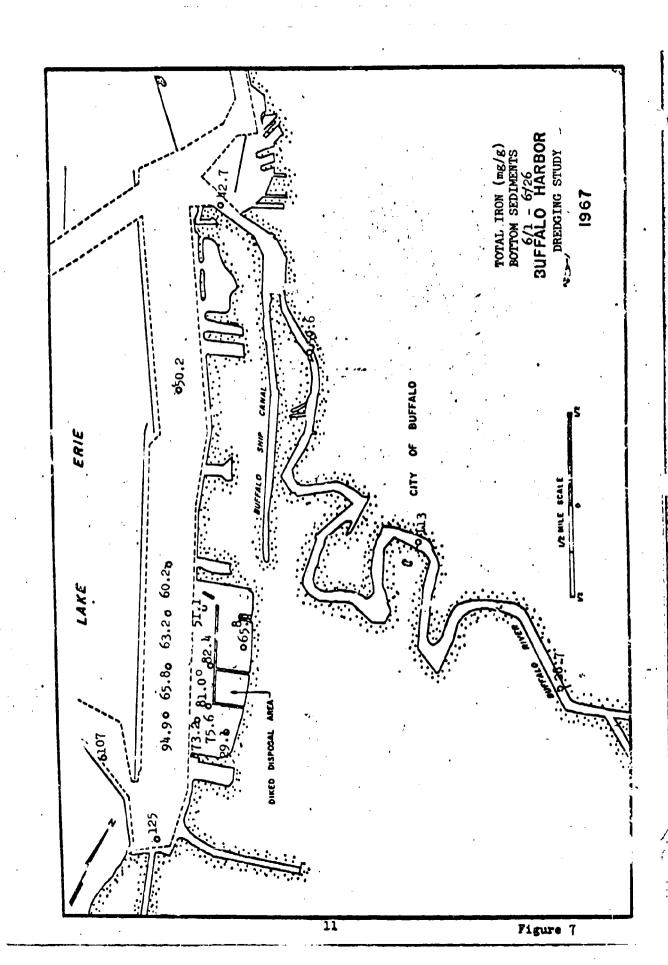
Concentrations of 10 mg/g of oil and grease (hexane extractables) were found at the south end of the harbor and the north end of the channel. Quantities as low as 1.73 mg/g were found in the intermediate sectors. The concentration ranged from approximately 7 mg/g at the upper limit of dredging and at the mouth of the Buffalo River to a maximum of 27.6 mg/g near the center of the dredged portion.

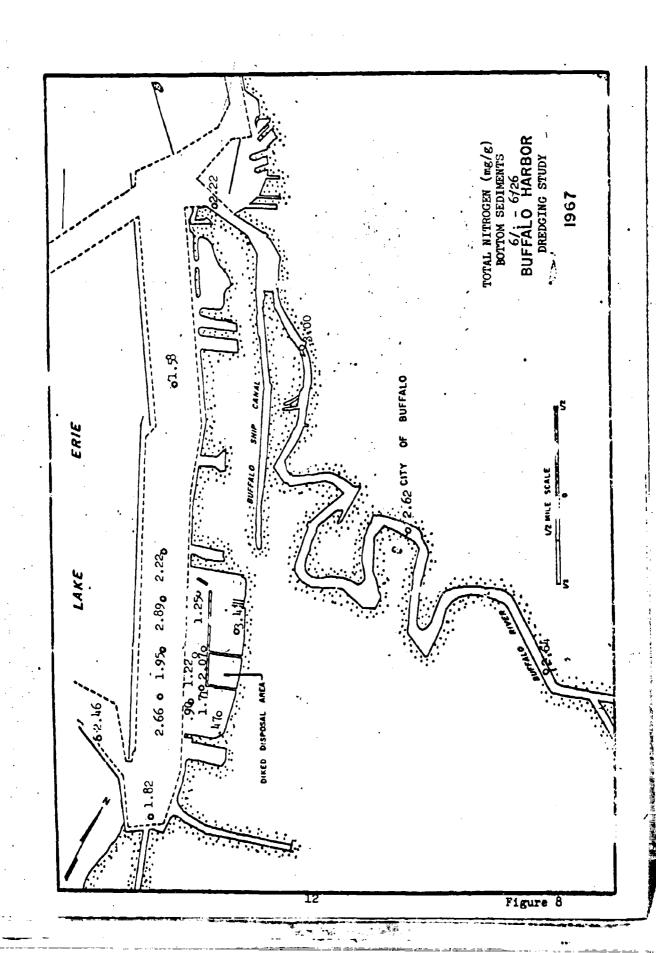
Phosphorus

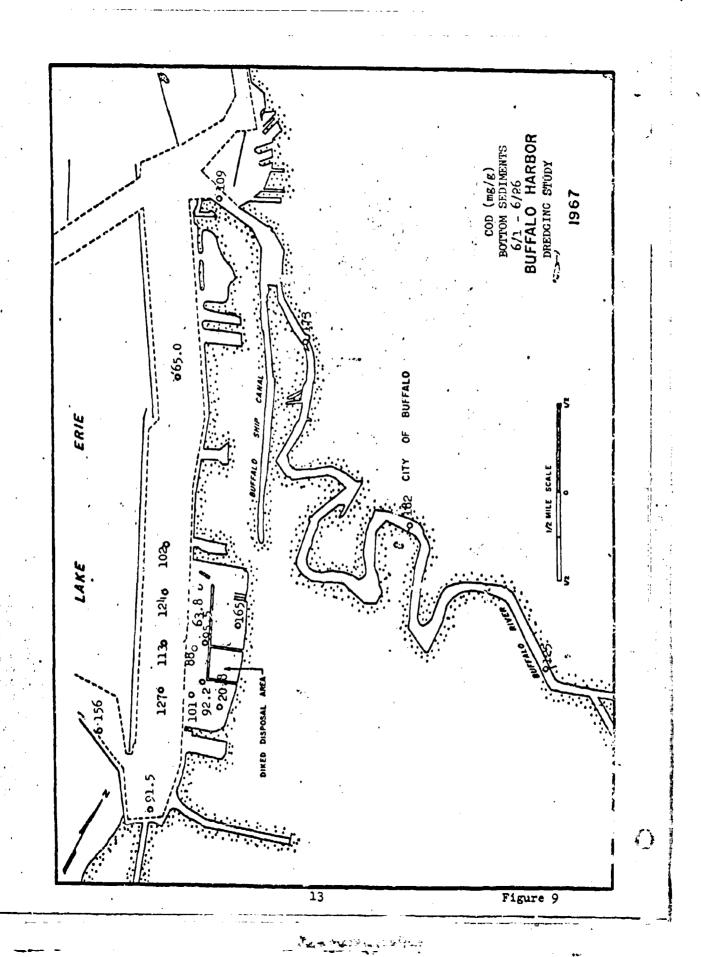
The amount of phosphorus in the sediments was about 1 mg/g throughout the harbor and channel except at the north end of the channel where it was 1.72 mg/g. The higher value found at this location probably results from combined sewer overflows to Scajaquada Creek. The concentrations in the Buffalo River were also relatively constant, ranging from 1.0 to 1.3 mg/g.

Nitrogen

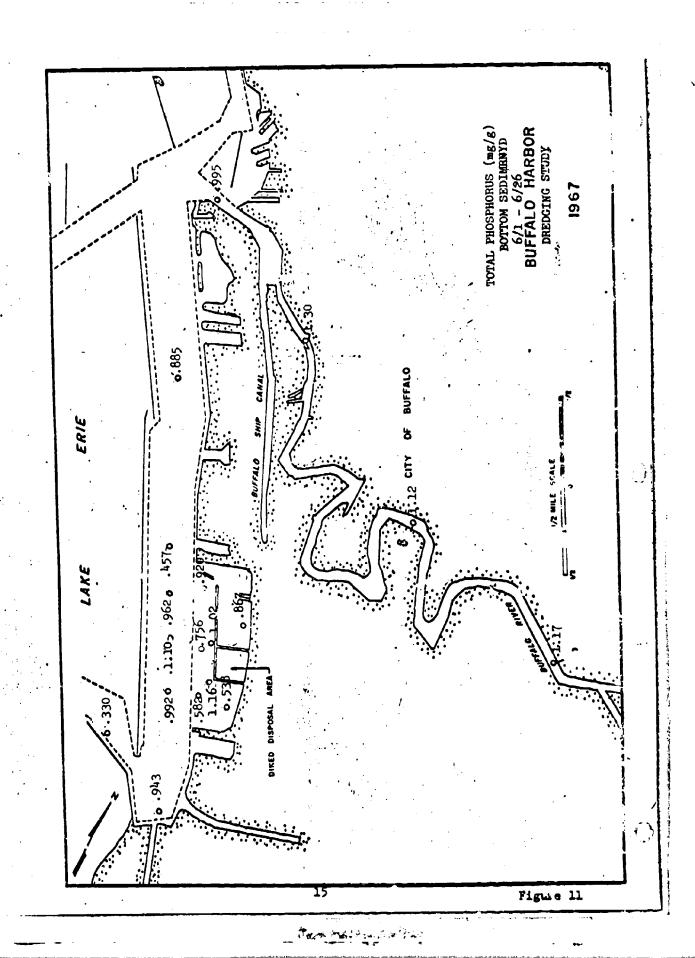
The total nitrogen level in the sediments was higher at the south end of the harbor (2.89 mg/g) and at the north end of the channel (3.26 mg/g) than at any intermediate point sampled. The concentration was somewhat more uniform in the Buffalo River, ranging from 2.2 mg/g to 3 mg/g found 0.9 miles upstream of the mouth.

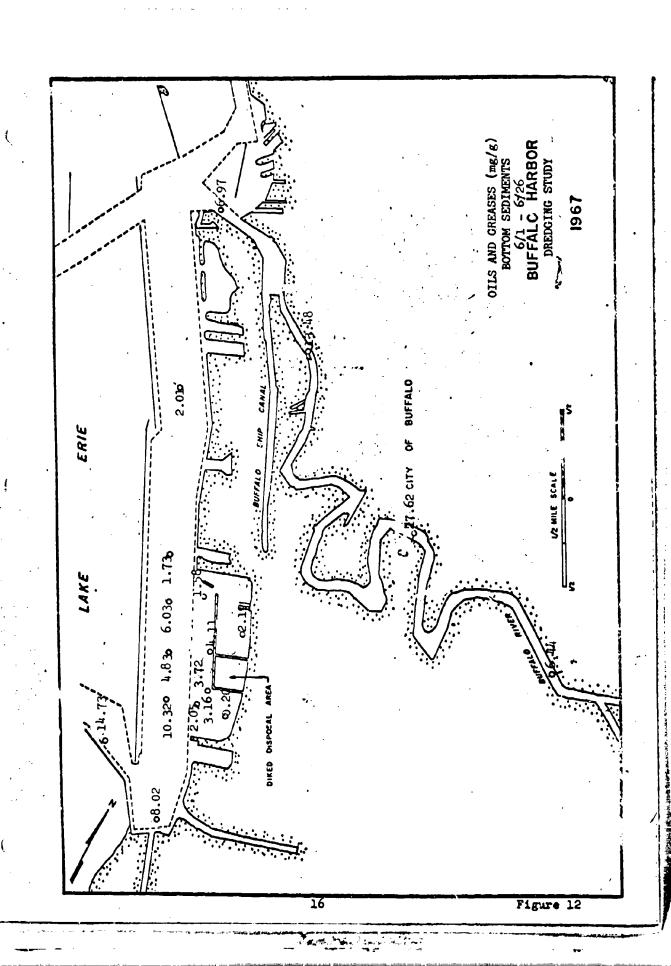

Iron


The maximum concentration of 125 mg/g of iron was found at the north end of the harbor which receives iron bearing wastes from the Hanna Furnace and Bethlehem Steel plants. In other portions of the harbor and channel the sediments contained about 50 mg/g of iron.


As was expected, the maximum concentration of iron (113 mg/g in the Buffalo River was found near steel plant waste discharges. It was approximately 29 mg/g at the upper dredging limit and 49 mg/g at the mouth.

Diked Area for Disposal of Buffalo River Dredgings


Figures 7 through 12 show the concentration of the various constituents in the sediments in the vicinity of the diked disposal area as well as the harbor and the Buffalo River. It is noted that the concentrations of total phosphorus, total nitrogen, and volatile solids were essentially the same near the diked sector as in the adjacent harbor area. The quantity of COD, iron, and oil and grease is somewhat lower in the immediate vicinity of the diked area than in the nearby harbor sector. This would seem to indicate that the movement and deposition of waste materials from the Bethlehem Steel and



Donner Hanna plants tends to occur in the harbor and they do not enter the area near the dike.

Sediment Load Summary

The loadings of the various constituents to the Lake Erie dumping grounds resulting from the Buffalo Harbor and Black Rock Channel dredging in 1967 is presented in Table 1. The reported values were calculated from analyses of sediment samples collected from hopper dredge loads and the total dry solids dredged as determined by the Corps of Engineers. Although the number of hopper dredge loads sampled was somewhat limited, the reported values are believed to be reasonably valid.

Table 2 shows the quantity of the constituents of the material dredged from the Buffalo River and placed within the diked area. These values are at best approximate as they are based on the analysis of relatively few samples of in-place sediments collected from the Buffalo River. A larger number of collected samples of the materials loaded on the scows is currently being analyzed. Use of these determinations when available will provide a more dependable estimate. Table 3 shows the average concentration of constituents found in above areas which were used in calculating the loadings.

Benthic Biology

Sludgeworms were the predominant benthic organisms found in most of the areas sampled. The numbers found are presented in Figures 13 and 14. Some areas were essentially devoid of benthic organisms. This was true of the Buffalo River and the extreme south end of the harbor.

There was the contract

TABLE I

LOADINGS TO LAKE ERIE FROM BUFFALO HARBOR
AND BLACK ROCK CHANNEL DREDGING - 1967

Constituent	Harbor (lbs)	Black Rock Channel (1bs)	Total (1bs)
Chemical Oxygen Demand	57,300,000	3,420,000	60,720,000
Chlorine Demand (15 min)	2,230,000		
Volatile Solida	48,900,000	2,530,000	51,430,000
Oil and Greate	3,510,000	184,000	3,694,000
Phosphorus	402,000	28,000	430,000
Nitrogen	1,150,000	62,300	1,212,000
Iron	41,700,000	1,110,000	42,810,000
Total Dry Solids	516,600,000	24,800,000	541,400,000

Note: Based on available data. Additional forthcoming data may result in some adjustment.

TABLE 2

LOADINGS FROM BUFFALO RIVER
DEPOSITED INTO DIKED AREA

1967

Constituent	Pounds				
Chemical Oxygen Demand	12,100,000				
Volatile Solids	7,810,000				
Oul and Grease	1,120,000				
Phosphorus	94,400				
Nitrogen	215,000				
Iron	4,980,000				
Total Dry Solids	82,101,000				

Note: Tentative estimate. Forthcoming expected to provide more dependable values.

TABLE I

LOADINGS TO LAKE ERIE FROM BUFFALO HARBOR
AND BLACK ROCK CHANNEL DREDGING - 1967

Constituent	Harbor (1bs)	Black Rock Channel (1bs)	Total (lbs)
Chemical Oxygen Demand	57,300,000	3,420,000	60,720,000
Chlorine Demand (15 min)	2,230,000	~~	
Volatile Solids	48,900,000	2,530,000	51,430,000
Oil and Grease	3,510,000	184,000	3,694,000
Phosphorus	402,000	28,000	430,000
Nitrogen	1,150,000	62,300	1,212,000
Iron	41,700,000	1,110,000	42,810,000
Total Dry Solids	516,600,000	24,800,000	541,400,000

Note: Based on available data. Additional forthcoming data may result in some adjustment.

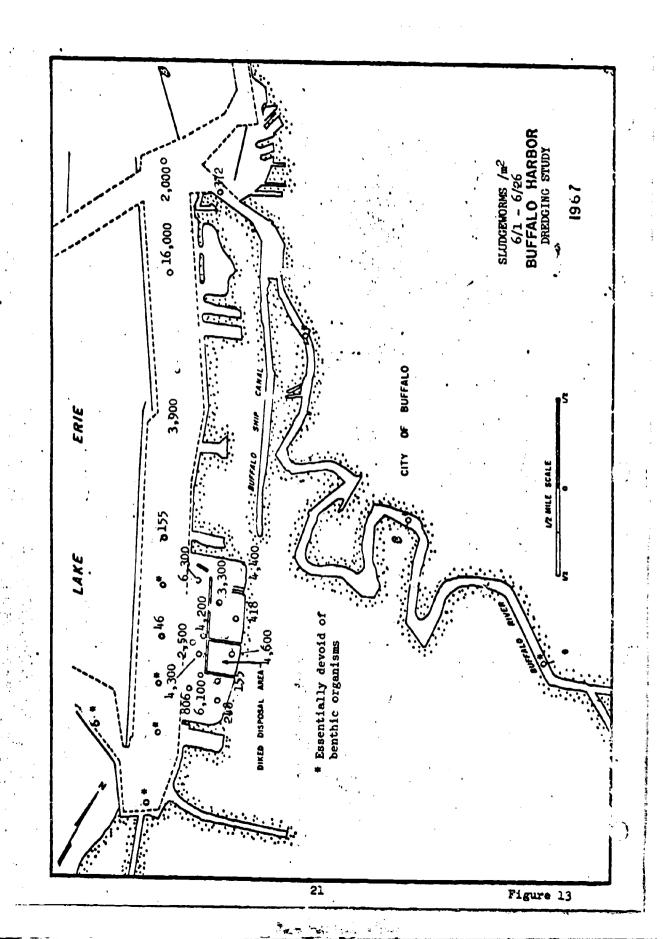
TABLE 2

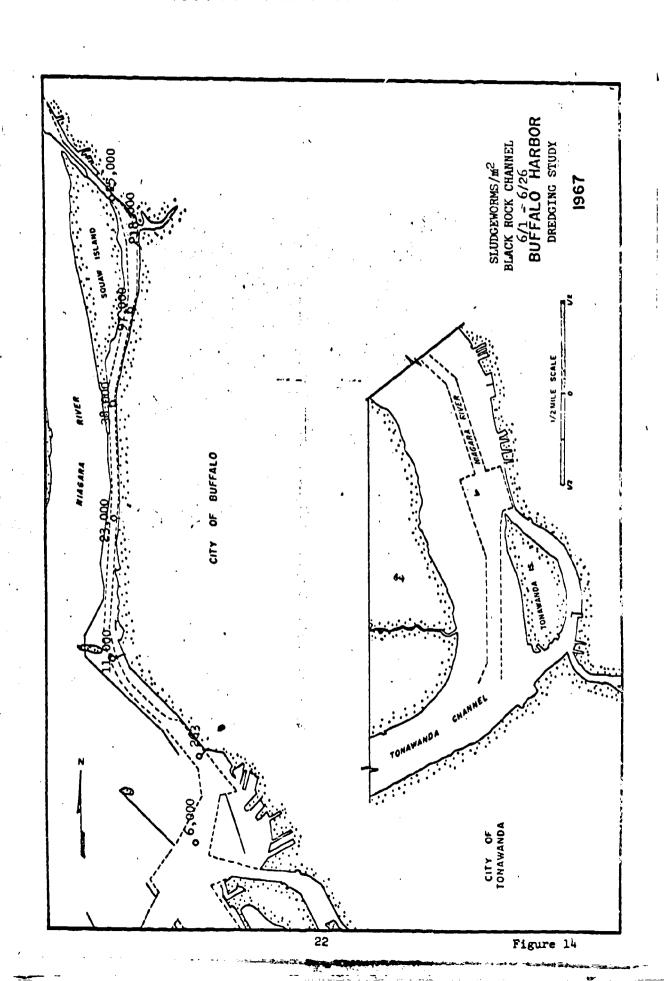
LOADINGS FROM BUFFALO RIVER
DEPOSITED INTO DIKED AREA
1967

Constituent	Pounds				
Chemical Oxygen Demand	12,100,000				
Volatile Solids	7,810,000				
Oul and Grease	1,120,000				
Phosphorus	94,400				
Nitrogen	215,000				
Iron	4,980,000				
Total Dry Solids	82,100,000				

Note: Tentative estimate. Forthcoming expected to provide more dependable values.

()


TABLE 3


AVERAGE CONCENTRATION COMPARISON FOR VARIOUS AREAS (mg/g dry weight)

Constituent	Vicinity of Dike	Buffalo Harbor	Buffalo River	Black Rock Channel		
COD	89	111	147	138		
Total Volatile Solids	74.0	94.9	95.2	103		
Chlorine Demand (15 min	.)	4.13				
Oil and Grease	2.43	6.81	13.63	7.43		
Total Phosphorus	0.852	0.778	1.15	1.13		
Total Nitrogen	1.58	2.23	2.62	2.51		
Total Iron	65.5	9.03	60.7	44.8		

hove.

termina in a single

Materials toxic to the organisms are suspected of being present in the water and/or sediments at these locations. Smothering by erosion materials may also play a part.

In the Black Rock Channel sludgevorms were overwhelmingly dominant. In the portion of the harbor extending from the dike area to the north end of the harbor there were fewer sludgevorms and a somewhat more balanced benthic population. This indicates that this sector is somewhat less polluted which was also shown by the chemical characteristics of the sediments.

Samples for determination of benthic organisms present in the area surrounding the dike area were also collected after termination of the 1967 dredging. Similar determinations are to be made prior to 1968 dredging operations. A comparative evaluation of the organisms present before and after dredging may provide significant information as to the effect of dredging operations.

WATER ANALYSIS

The ranges of the concentrations of constituents present in the waters in river, harbor, channel, and dike disposal areas prior to dredging operations are shown in Table 4. The waters at the lake dumping were not investigated as the available time was limited. It was believed that the high background concentrations due to Bethlehem Steel waste discharges in the immediate area would obscure any before and after changes in water quality and render such investigation relatively inconclusive.

The disposal of dredgings from the Buffalo River was somewhat

1

TABLE 4
CONCENTRATION RANGES OF WATER CONSTITUENTS

Constituent	Vicinity of Dike	Buffalo Harbor	Buffalo River	Black Rock Channel		
Total Phosphorus	0.03-0.08	0.03-0.06	0.17-0.82	0.04-0.08		
Organic N mg/2	0.28-0.70	0.39-1.01	2.02-4.93	0.39-0.68		
Ammonia N mg/l	0.01-0.14	0.01-0.10	0.05-0.10	0.03-0.22		
Nitrate N mg/l	0.06-0.13	0.02-0.10	0.14-0.32	0.06-0.23		
Chloride mg/l	23-26	23-26	38-64	24-35		
Phenol µg/l	0-3	0-20	32-1590	0		
Total Solids mg/l	176-375	206-273	207-428	231-345		
Suspended Solids mg/l	0-8	0-8	0-50	2-32		
Conductivity	320-340	320-350	400-670	320-400		
micromhos/cm Coliforms/100 ml	70-400	100-800	15,000-36,000	<10-4600		

TABLE 5

MEDIAN COLIFORM CONCENTRATIONS
(org/100 ml)

	Vicinity	Buffalo	Buffalo	Black Rock
	of Dike	Harbor	River	Channel
Coliforms/100 ml	350	400	21,000	1,920

curtailed and not completed until the end of November. This limited the extent of sampling during and after the dredging. Not all of the analyses of these samples have been completed. Preliminary examination of the currently available data does not indicate any changes in the water quality outside of the diked area due to disposal operations. It should be recognized that the analytical methods for parameters used may not be sufficiently sensitive to show slight changes that do occur in the surrounding waters. Table 5 shows median coliform concentrations in the areas studied. No changes in the bacterial quality of the water outside the diked area due to disposal operations are discernable.

CONSTITUENTS IN THE INFLOW AND OUTFLOW OF HOPPER DREDGES

Data on certain constituents in the inflow and outflow of hopper dredges are presented in Table 6. The values shown are the average concentrations of those found in several dredge loads.

SOME TENTATIVE CONCLUSIONS

The hopper dredging operations in the Buffalo Harbor and the Black Rock Channel markedly increased the visually observed turbidity and floating oils in the area dredged during the operations. The oil films persisted for some time after the dredging.

From limited data now available, it appears that the disposal of dredged materials within the diked area does not create any signifi-cant detrimental effect on the waters surrounding the dike.

It is believed that the more accurate procedure for determining the constituent loadings in the dredged materials is to collect

TABLE 6

AVERAGE CONCENTRATION OF CONSTITUENTS IN INFLOW AND OUTFLOW OF HOPPER DREDGES mg/l

		Buffalo	Harbor		Black Roo	k Channel
Constituent	Inflow 6-15-67	Outflow 6-15-67	Inflow 6-19-67	Outflow 6-19-67	Inflow 7-5-67	Outflow 7-5-67
COD	33,200	16,000	22,300	14,600	47,000	35,000
Chlorine Demand			1,350	682		
Oil and Grease	107	302	176	231	790	181
Total Phosphorus	12.2	5.02	9.23	9.00	29.4	18.2
Total Nitrogen	433	341	396-	375	1,004	696
Total Iron	2,141	1,361	1,435	908	2,020	1,158
Hydrometer Density	1.196	1.125	1.180	1.098	1.150	1.063
Total Volatile	24,400	17,900	21,000	13,700	40,000	20,600
Solids Total Solids	353,000	213,000	296,000	165,000	336,000	147,000

representative samples of the materials loaded on the dredges or scows. Sampling of hopper dredge inflow and overflow does present some problems.

APPENDIX A 4

INTERIM SUMMARY OF CLEVELAND
HARBOR DREDGING EFFECTS INVESTIGATION

1967

By Robert P. Hartley Chief, Surveillance Section

December 1967

CLEVELAND PROGRAM OFFICE

FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
Revised September 1968

The state of the s

TABLE OF CONTENTS

Pa	ge
INTRODUCTION	1
SEDIMENT ANALYSIS	2
Chlorine Demand	2
Chemical Oxygen Demand	
Volatile Solids	
Biochemical Oxygen Demand	
Oil and Grease	
Phosphorus	
Nitrogen	
Total Iron	
Silica	0
Cadimant Ind Commons	0
Sediment Load Summary	0
Benthic Biology	1
WATER ANALYSIS	1
MISCELLANEOUS MEASUREMENTS	7
TENTATIVE CONCLUSIONS	8
Immediate Effects of Dredging	R
Immediate Effects of Dredging	o o
bong term birecos or breaging, , , , , , , , , , , , , , ,	,
TENTATIVE RECOMMENDATIONS	3
FIGURES	
1. Cleveland Harbor Dredging Study 1967 Sampling Stations	5
2. Cuyahoga River Sediment Data	
	7
4. Cleveland Harbor Sediment Data	
5. Cleveland Harbor Sediment Data	ā
6. Cleveland Dumping Ground Sediment Data	
7. Cleveland Dumping Ground Sediment Data	
8. Chemical Oxygen Demand, Bottom Sediments, 3/29-3/30 1	
9. Chemical Oxygen Demand, Bottom Sediments, 4/3-4/4 1	.4
10. Chemical Oxygen Demand, Bottom Sediments, 6/14-6/21 1	
11. Chemical Oxygen Demand, Bottom Sediments, 7/12-7/18 1	1
12. BOD, Bottom Sediments, 3/23-3/30	0
13. BOD ₅ , Bottom Sediments, $4/3-4/4$	1
14. BOD, Bottom Sediments, $\frac{4}{10}$ - $\frac{4}{17}$	5
15. BOD ₅ , Bottom Sediments, $6/1.2 + 6/22 \dots 2$	3
16. BOD ² , Bottom Sediments, 7/12-7/18	
17. Oil and Grease, Bottom Sediments, 3/23-3/31	

The to Marie Land State State

TABLE OF CONTENTS

FIGURES	3						1	Page
18.	Oil and Grease, Bottom Sediments, 7/10-7/18							27
19.	Total Phosphorus, Bottom Sediments, 3/23-3/3	0.	,					29
20.	Total Nitrogen, Bottom Sediments, 3/23-3/31							31
21.	Total Nitrogen, Bottom Sediments, 4/3-4/4.							32
22.	Total Nitrogen, Bottom Sediments, 4/10-4/17							33
23.	Total Nitrogen, Bottom Sediments, 6/12-6/22							34
	Total Nitrogen, Bottom Sediments, 7/11-7/18							
	Total Iron, Bottom Sediments, 3/23-3/31							
	Total Iron, Bottom Sediments, 4/10-4/17							
	Silica, Bottom Sediments, 3/23-3/31							
	Sludgeworms, Bottom Sediments, 3/23-3/31							
	Sludgeworms, Bottom Sediments, 4/10-4/12							
	Sludgeworms, Bottom Sediments, 7/67							
TABLES								
1.	Cleveland Harbor Dredging Study Sampling							3
2.	Loadings to Lake Frie from Cleveland Harbor River Dredging, 7/1/66-7/1/67							28
٦.	Average Concentration Comparion for Various							
	Concentration Ranges of Water Constituents.							
	Average Coliform Concentrations							
٦.	MACTORE COTITOTH CONFIGURATIONS	• •	•	•	•	•	•	40

INTERIM SUMMARY OF CLEVELAND HARBOR DREDGING EFFECTS INVESTIGATION DECEMBER 1967 CLEVELAND PROGRAM OFFICE

INTRODUCTION

This summary of the Cleveland Harbor dredging investigation only includes data on sampled in-place materials (sediment and water) from the harbor and dumping area. It is essentially a preliminary report on effects pertaining to present methods of dredging and disposal, even though the actual operational characteristics of dredging have not yet been investigated in detail.

The final report on dredging for the Cleveland area will include detail on the water quality effects of various disposal methods (i.e. deep water versus diked area), the immediate effects of the dredging operation (material removed versus material returned), and specific criteria for determining the disposal and dredging methods. To complete the investigation several analyses remain to be made. The Cleveland diked area (pilot dike) will be studied intensively as will the dredged materials while dredging.

In addition to the Cleveland investigation all other Lake Erie harbors will be sampled to determine the quality of existing sediments in more detail. This is necessary in order to make a sensible judgment on disposal methods. It is recognized that it may not be wise to keep all harbor sediments from reaching the lake and that some may be beneficial. These investigations will be reported separately from the Cleveland report.

The Marie The

The summary is based upon sampling of bottom sediments and overlying water in the Cuyahoga River navigation channel, the outer Cleveland Harbor, and the dredging dump for these areas. Figure 1 shows the sampling locations. The characteristics of central Lake Erie bottom sediments are based upon sampling done in 1963.

The schedule of sampling at Cleveland is shown in Table 1. The sampling was designed around dredging schedules. The river was dredged by clamshell between 28 March and 1 July 1967 and the outer harbor was hopper dredged between 27 March and 6 April 1967.

Tabulations of analyses are not presented in this report but are available at the Cleveland Program Office, FWPCA.

SEDIMENT ANALYSIS

Figures 2 through 7 show the results of several sediment analyses as value profiles for the river, the narbor, and the dump.

Chlorine Demand

Chlorine demand (15 minute) was determined on a dry weight basis for bottom sediments at the river and harbor stations in September 1967. It has not been determined for any dump or lake bottom samples.

Cuyahoga River sediments have a high chlorine demand (Figure 2), due probably to high ferrous iron content. Test results were erratic as might be expected but above one mile from the river mouth the demand averaged more than 30 mg/g. Using data provided by the Corps of Engineers on sediment density(1209 lbs dry wt/yd³), the average 15 minute demand per cubic yard of in-place sediment would be approximately 36 pounds. Extending this to an average scow load of dredged material (1350 cubic yards) the demand would be 48,600 pounds. Extending further

The Maria Control

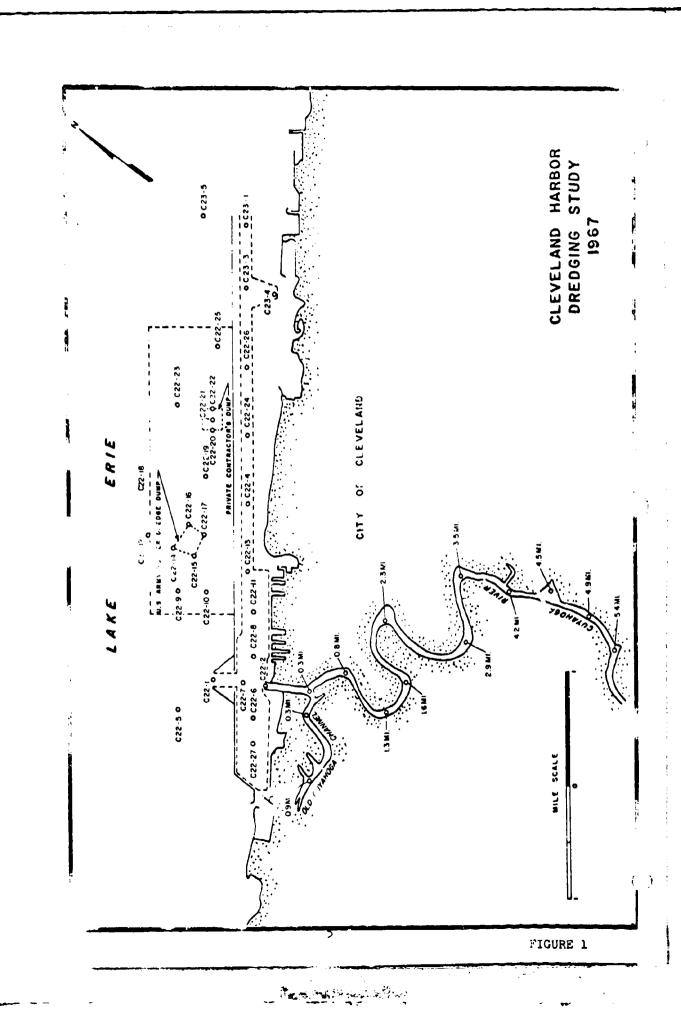
TABLE 1
CLEVELAND HARBOR DREDGING STUDY SAMPLING

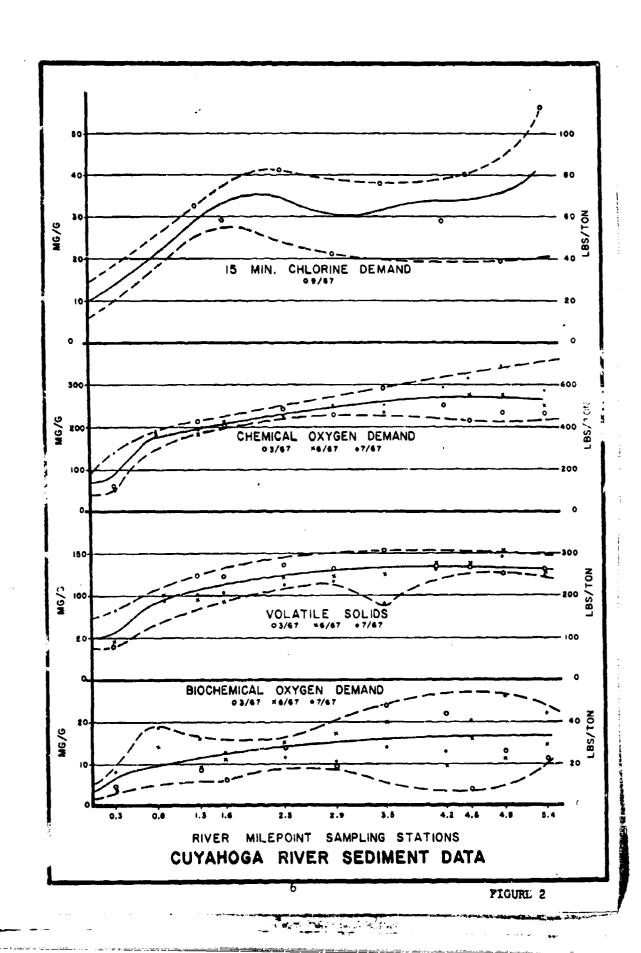
					Samplin	g Date		·
Sampling Location	3/23 3/24 2/27	3/28	3/31	1/10 12/10 12/10 12/10	6/12 6/13 6/14 6/14 6/21	6/22 7/10 7/12 7/13	7/18 9/12 9/14 9/16 9/20	9/22 9/25 9/25 9/26 10/2 10/3
River C22-2 CRO.3 CRO.8 CRI.6 CRI.6 CR2.3 CR2.9 CR3.5 CR4.2 CR4.5 CR4.5 CR4.5 CR4.5	1 1 1 1 1 1 1 1 1 1 1		3 3	14 14	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	66 66 66 66 66 66	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7
Harbor 022-1 022-4 022-6 022-7 022-8 022-11 022-13 022-13 022-24 022-24 022-27 023-1 023-4	1 1 1 1 1 1 1	2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	; ; ; ; ; ; ; ;				7 7 7 7 7 7 7
Nump 122-5 122-9 122-10 122-12 122-14 122-15 122-16 122-17 122-18	1	2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	74 74 74 74 74 74	5 5 5 5 5 5 5	6 6 6 6 6 6	7 7 7 7	7 7

3

The state of the state of the

197₀₀

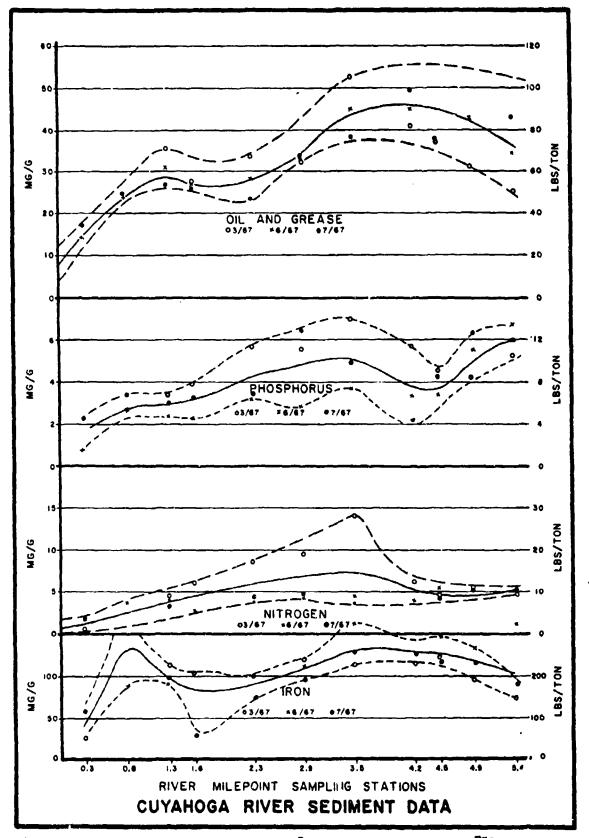
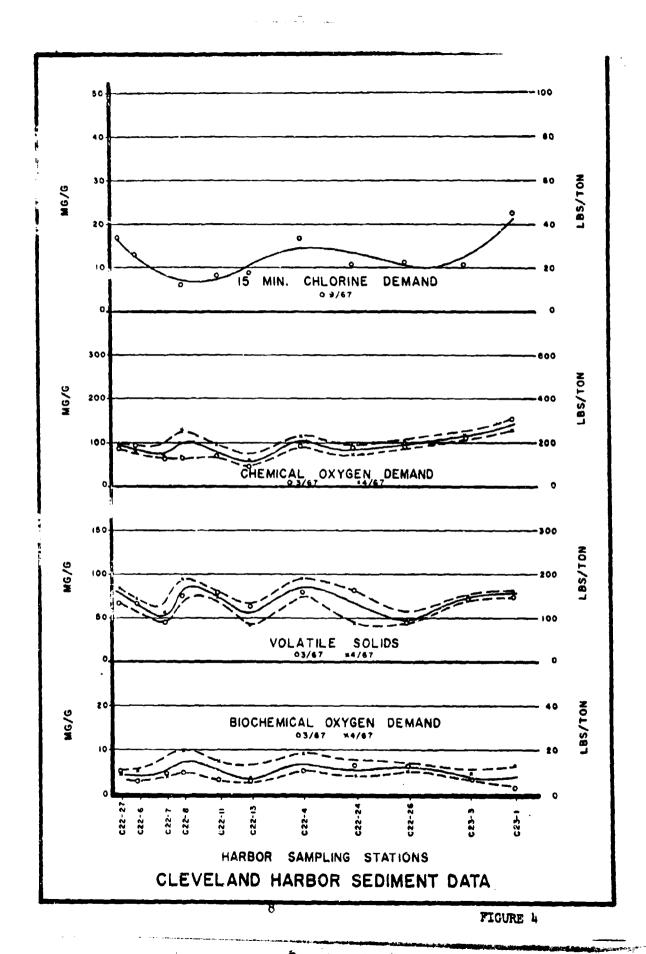
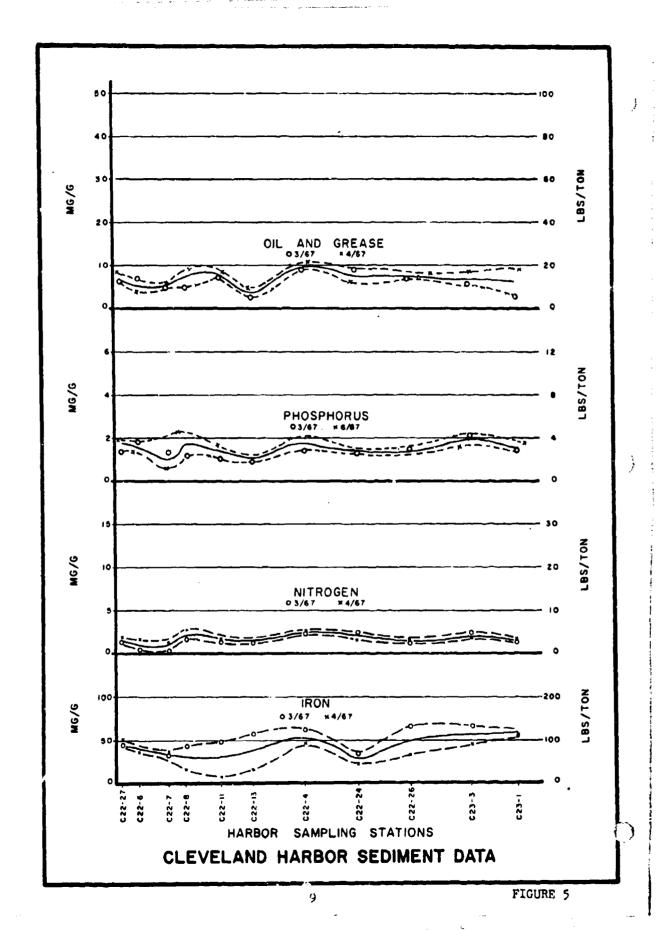

TABLE 1 (Cont.) CLEVELAND HARBOR DREDGING FIUDY SAMPLING

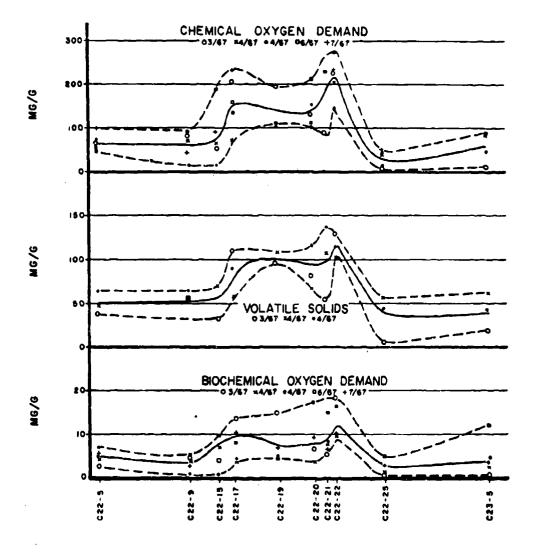

Campldn-		Sampling Data									
Sampling Location	3/23 3/24 3/27 3/28	3/30	1/3 1/4 1/4	4/10 4/12 4/17 6/12	6/13 6/16 6/21 6/21 7/10	7/12 7/13 7/13 7/14 9/12 9/15	9/20 9/20 9/25 9/26 9/26 10/2				
Dump (cont	.)					-					
C22-19 C22-20 C22-21 C22-22 C22-23 C22-25 C23-5		3 2 2 3 3 3 3 3	3 3 3 3 3	71 71 71 71 71 71	5 5 5 5 5 5	6 6 6 6 6	7 7 7 7 7				

- Before any dredging
 During hopper and scow dredging before scow dumping
- 3. During hopper and scow dredging after scow dumping
- 4. During scow dredging after hopper dredging
- 5. During scow dredging long after hopper dredging
- 6. After all dredging
- 7. Long after all dredging

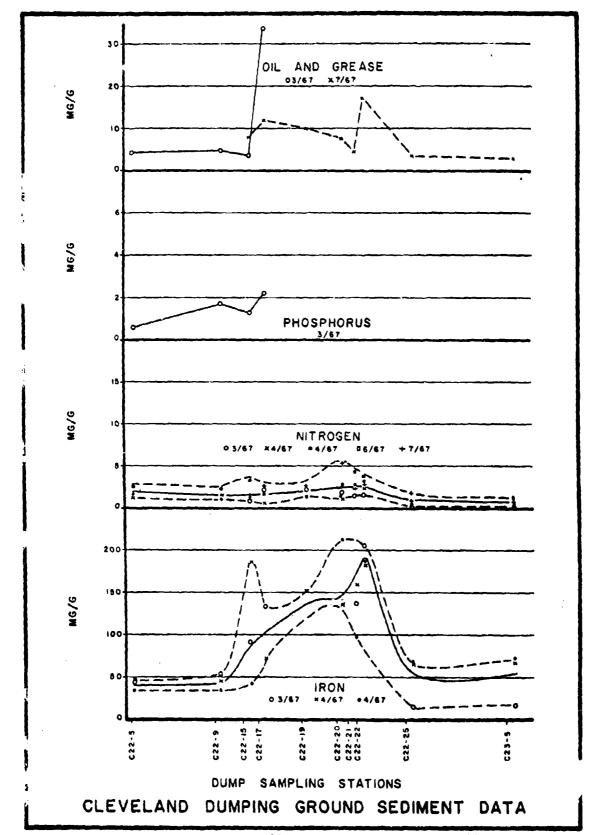
Hopper dredging outer harbor 3/27-4/6/67 Clamshell dredging river 3/28-7/1/67

_ Park the result of the


FIGURE 3

7


#

DUMP SAMPLING STATIONS

CLEVELAND DUMPING GROUND SEDIMENT DATA

There was the second trans

11

FIGURE 7

to the yardage removed from the Cuyahoga during the past year (773,000 cubic yards), 28 million pounds of chlorine would probably have been required to satisfy the 15-minute demand.

In the lower one mile of the Cuyahoga River the chlorine demand decreased rapidly to the level of the outer harbor.

Chlorine demand in the outer Cleveland Harbor, that part of the harbor between shore and the offshore breakwater, averaged about 12 mg/g or 24 lbs/ton dry weight. Extending this to a hopper dredge load equivalent of 850 tons dry solids, the demand is 20,000 pounds per load. Extending again to the amount of sediment removed in the past year, (199,000 tons) the total 15-minute demand would have been 4,776,000 pounds.

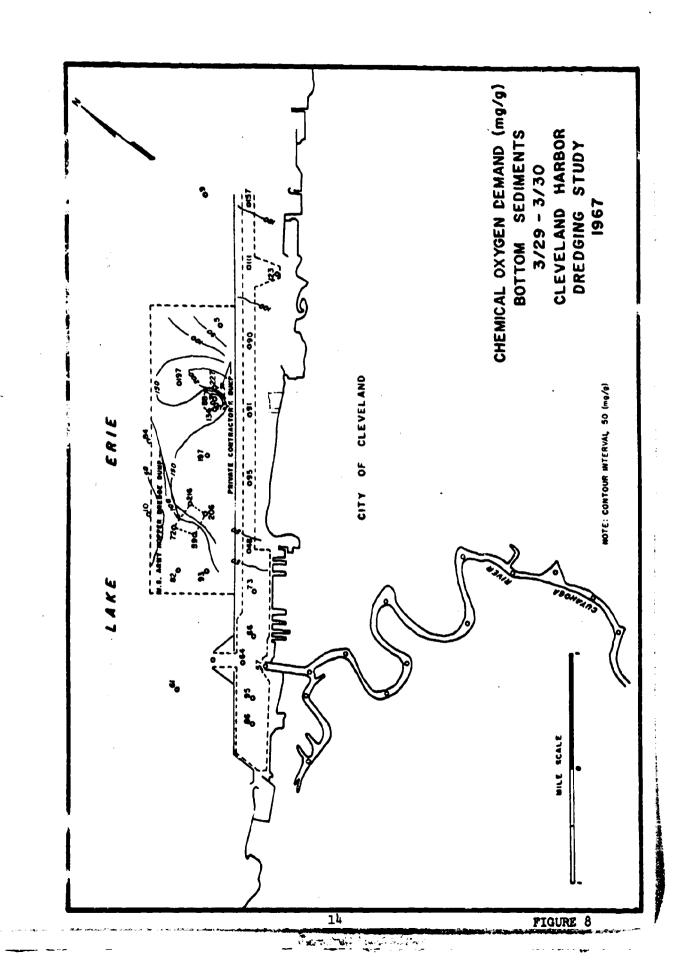
The chlorine demand per unit of dry weight in the outer harbor sediments is only about half of that in the river sediments.

Chemical Oxygen Demand

The chemical oxygen demand (COD) of the river sediments is high (Figure 2). This demand climbs steeply in the lower one mile of the river from an average of 70 mg/g to 170 mg/g. Above one mile the average climbs gradually to about 270 mg/g near the head of the navigation channel. A maximum of 341 mg/g was recorded about five miles upstream. An average for the entire river would be about 240 mg/g or about 480 lbs/ton dry weight. This is roughly equivalent to 290 lbs/yd³ of in-place sediment or 391,500 pounds per scow load of 1350 cubic yards. Extending this to the total past year's river dredging, 223,570,000 pounds of COD was removed.

The chemical oxygen demand of the outer harbor sediments averaged

about 95 mg/g or 190 lbs/ton dry weight or less than 40 percent of that in the river. Using 850 tons as a hopper dredge load, 161,000 pounds of COD would be contained therein. For the past year's hopper dredging 37,810,000 pounds of COD was removed. This is only about one-sixth of that dredged from the river.


Chemical oxygen demand of the sediments in the dumping ground varied widely with time indicating either considerable transport or change of in-place sediment character. Both phenomena are probably responsible. Figure 8, 9, 10 and 11 indicate the magnitude of the changes. Figure 6 shows a longitudinal COD profile in the dumping ground. The two areas of dumping are prominent with the river dumping site showing highest values. The background sediment COD in this area was apparently in the vicinity of 80 mg/g.

Volatile Solids

Volatile solids in the Cuyahoga River followed a pattern similar to COD with a rapid increase upstream in the lower mile from about 50 to about 100 mg/g dry weight (Figure 2). Above one mile the increase was gradual to about 135 mg/g in the upper two miles of the navigation channel. The average for the river was about 125 mg/g or 250 lbs/ton. This is equivalent to approximately 150 pounds per cubic yard of in-place sediment or 202,500 pounds per dredging scow load. This ratio applied to the past year's dredging gives 116,433,000 pounds of volatile solids taken from the river.

Volatile solids in the outer harbor also followed a pattern similar to COD (Figure 4). The average concentration was about 65 mg/g - 130 lbs/ton - slightly less than half the concentration in the river.

 $(\)$

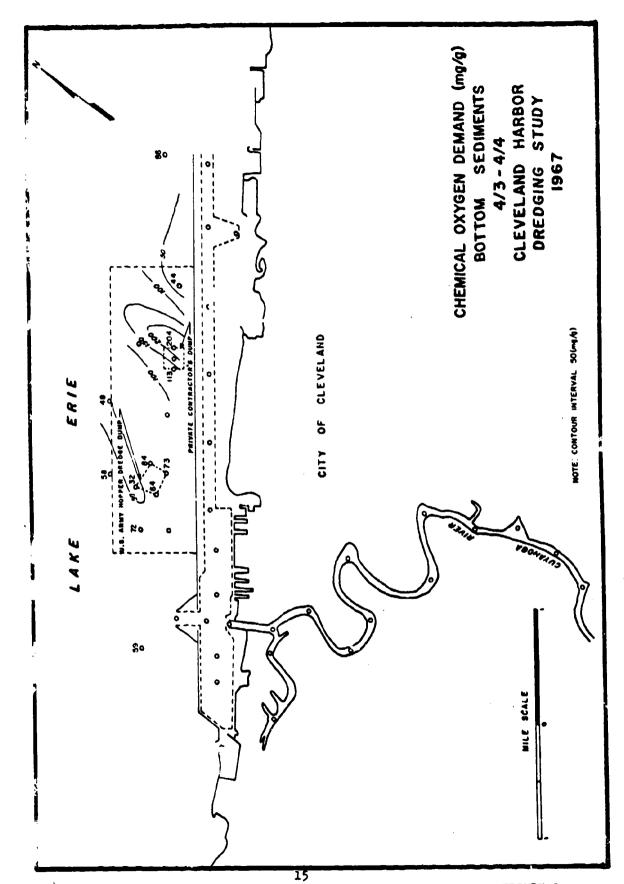
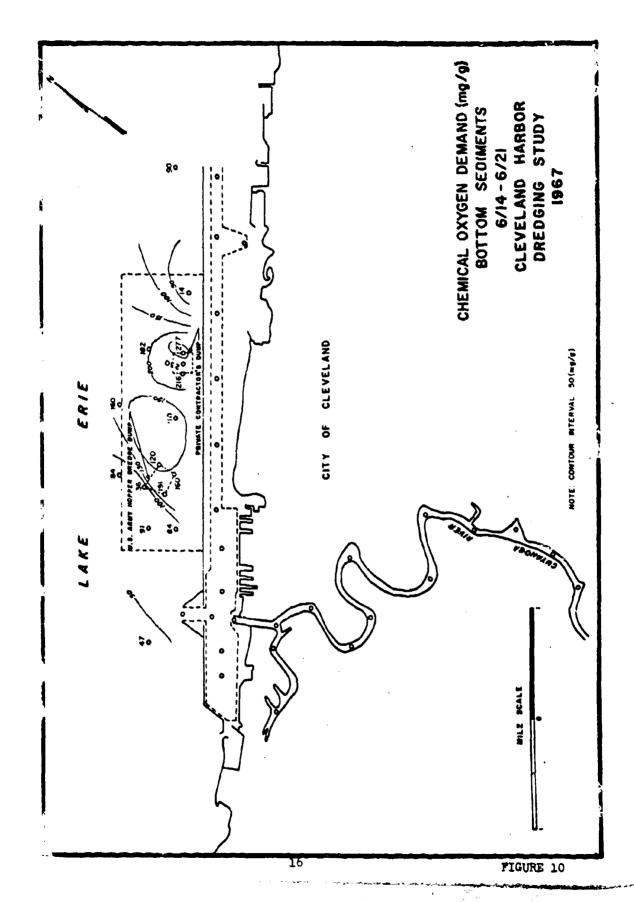
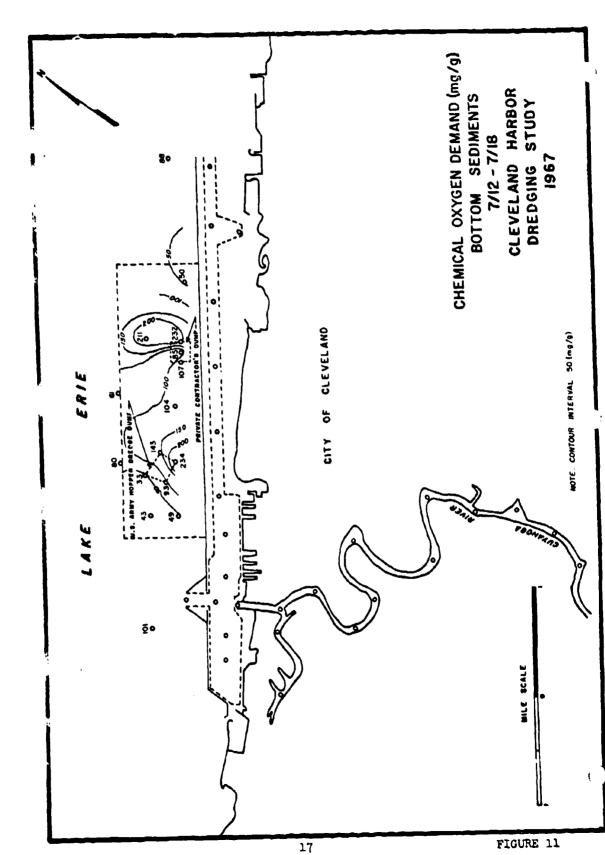




FIGURE 9

(])

The state of the

A hopper load of 650 tons dry weight would contain 108,000 pounds of volatile solids. A total of 25,835,000 pounds was removed in the past year's dredging.

Volatile solids in the dumping ground have a pattern very similar to COD (Figure 6). The river and harbor dump areas were easily identified by volatile solids. These areas had concentrations of the same magnitude as the source areas with the highest concentration in the river dump area.

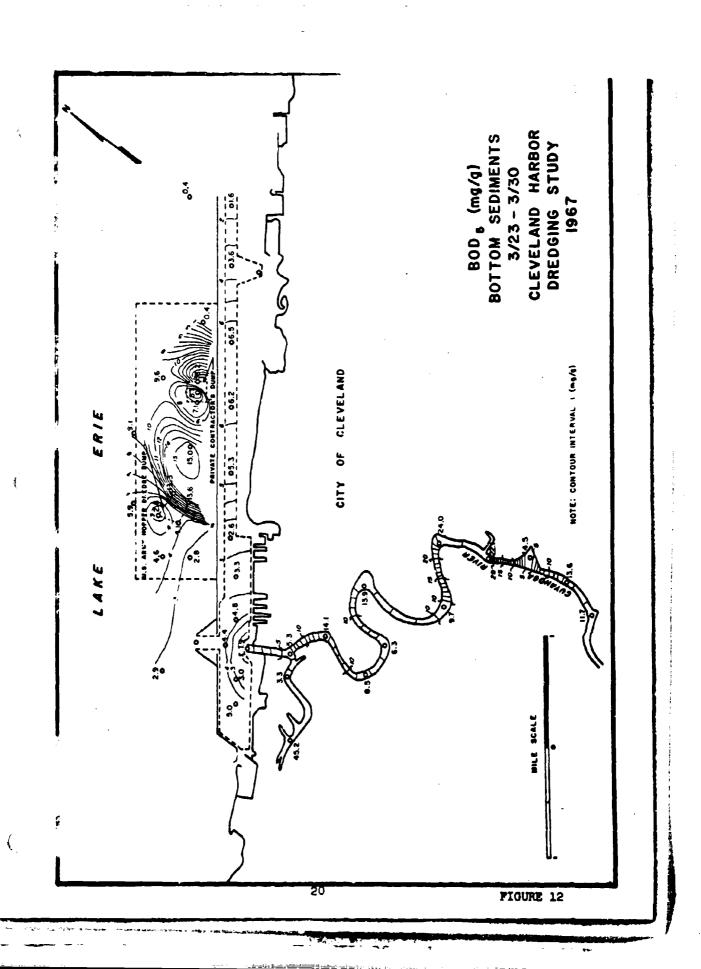
The background volatile solids concentration in the vicinity of the dumping grounds is in the range of 40 to 50 mg/g.

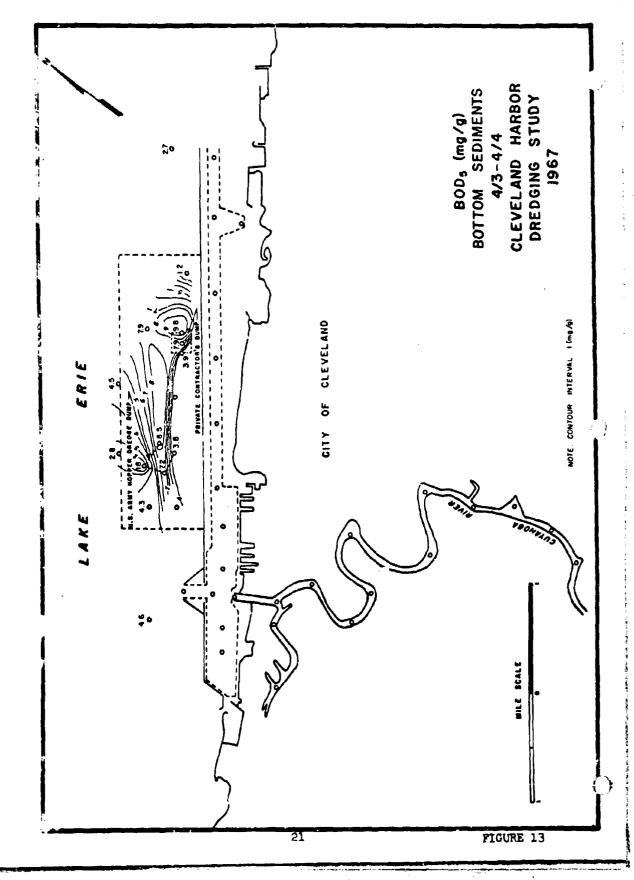
Biochemical Oxygen Demand

The 5-day biochemical oxygen demand (BOD₅) test on sediments is not considered a very good test as performed for this study. The test involved initial stirring and then quiescence for five days. Results varied widely (Figure 2) in the river sediments and toxicity may have played some part in the scatter. In addition some of the oxygen demand measured here is chemical in nature. The extent is not determined since IDOD was not measured.

THE BOD₅ of the river sediments, as measured, averaged about 15 mg/g or 30 lbs/ton dry weight. It increased sharply within the lower mile and then climbed gradually to the head of the channel. An average of 30 lbs/ton is approximately equivalent to 18 pounds per cubic yard of in-place sediment. This would give 24,800 pounds per 1350-yard scow load and 14,200,000 pounds total removed during the past year.

BOD₅ values for outer harbor sediments were much more uniform (Figure 4) and averaged about 5 mg/g or 10 lbs/ton. This value would give about 6.350 pounds per hopper dredge load of 850 tons and 1,990,000 pounds removed during the past year.

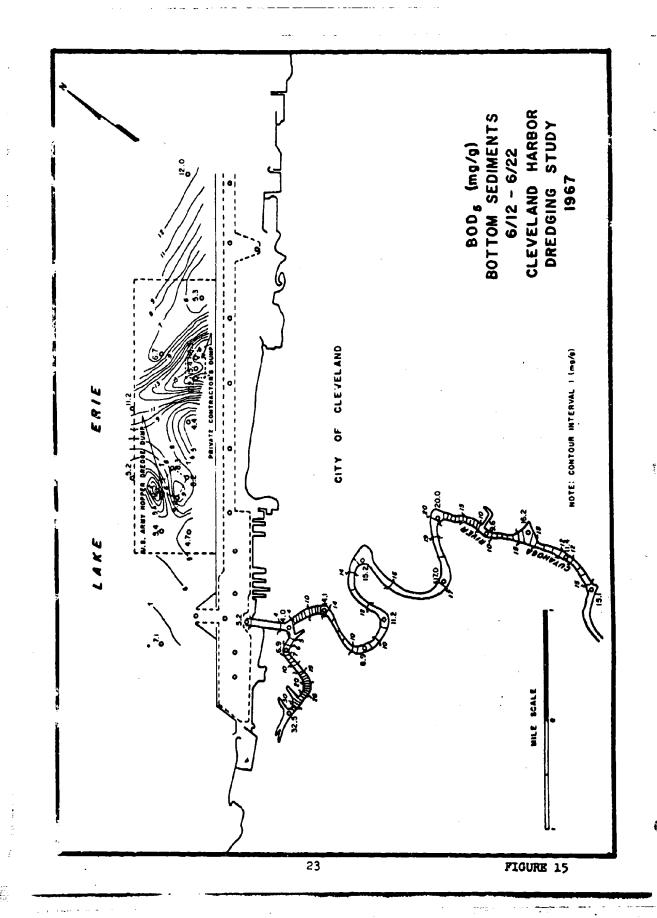

 BOD_5 in the river sediments averaged about 6 percent of the COD and in the harbor about 5-1/4 percent. The profiles of each were similar except in the east part of the outer harbor where COD rises and BOD_5 appears to fall. Chlorine demand was also higher in that area.


In the dumping ground BOD₅ was widely variable but the pattern was similar to COD (Figure 6). The actual dump sites showed higher 30D and the river dump the highest. Figures 12 through 16 show areal variations of BOD₅ in the dump sediments with time.

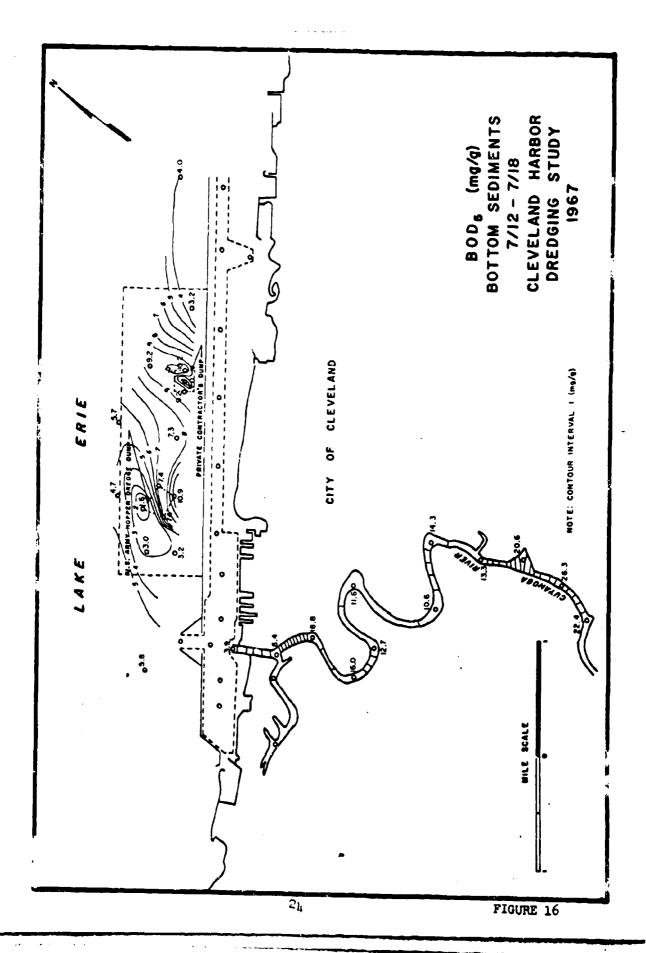
Oil and Grease

Oils and greases are the constituents of the Cleveland harbor sediments which cause the most offensive appearance. They were measured for this investigation by hexane extraction.

In the Cuyahoga River navigation channel oil and grease content is high (Figure 3). In the lower mile of the river the concentration climbs sharply from 5 mg/g to 25 mg/g of dry weight. In the next mile it remains relatively constant and then climbs to about 45 mg/g. In the upper mile of the navigation channel the oil concentration falls to about 35 mg/g. An average for the river would be about 35 mg/g or 70 lbs/ton of sediment dry weight. This is equivalent to about 42 pounds per cubic yard of in-place sediment or 56,360 pounds per dredging scow load. Extending this rate, 32,270,000 pounds were removed



7


Mark Mar Sales Sales

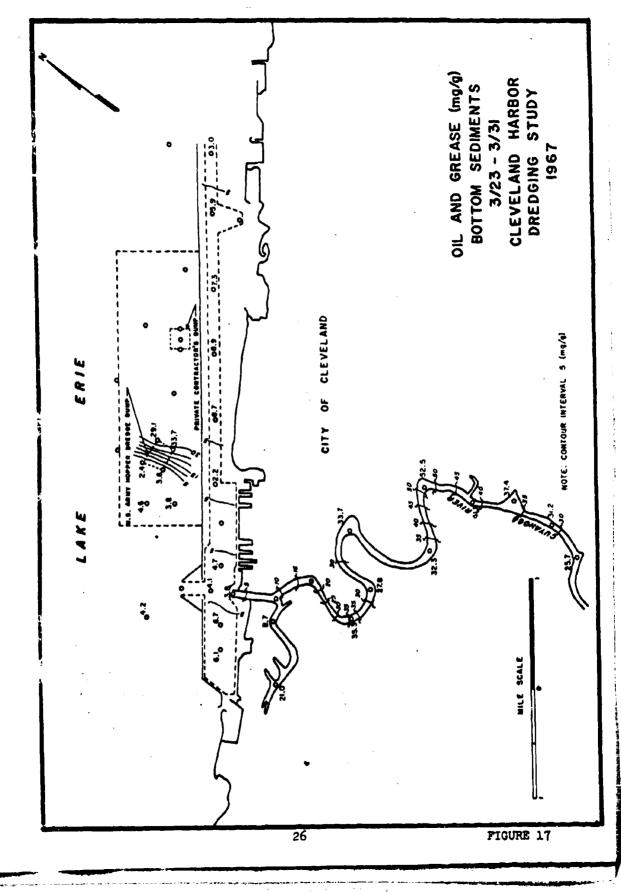
BOD₆ (mg/g)
BOTTOM SEDIMENTS
4/10-4/17
CLEVELAND HARBOR
DREDGING STUDY JAKE STUDY 1967 CLEVELAND NOTE: CONTOUR INTERVAL 1 (mg/g) CITY OF FIGURE 14 22

Tues have all all the

There was a later with an

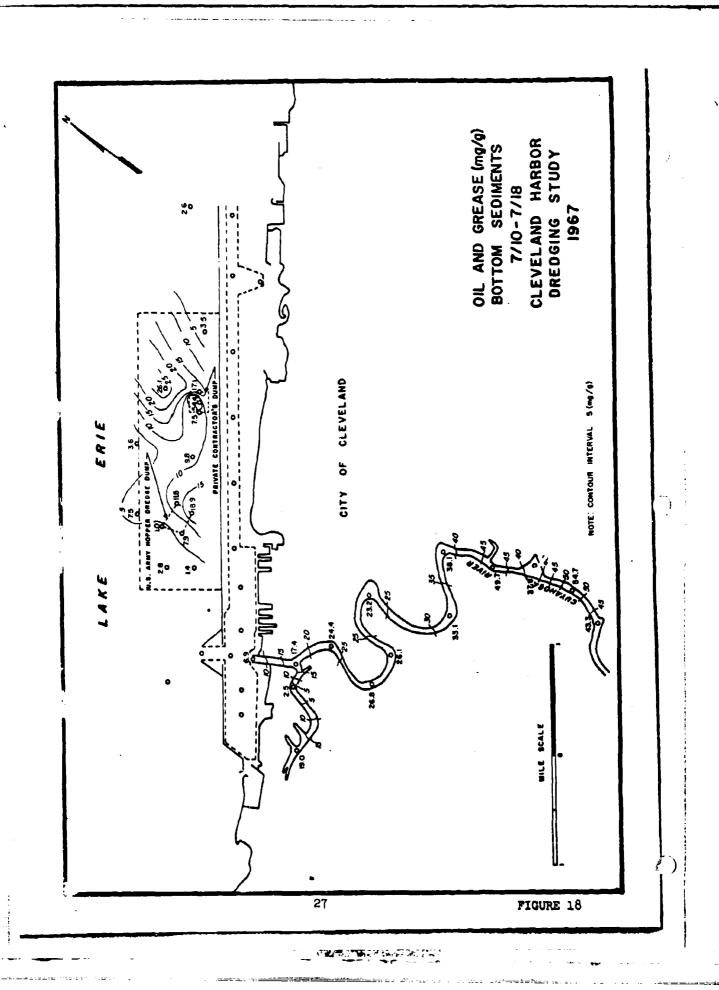
The State of the State of the

from the river in the past year by dredging.


The oil and grease content of the outer harbor sediments is much lower (Figure 5), averaging about 8 mg/g dry weight or 16 lbs/ton. This concentration would give 13,600 pounds per hopper dredge load of 850 tons and 3,170,000 pounds for the past year's dredging. This is only about one-tenth the quantity removed from the river.

Oil and grease content in the dumping ground (Figure 7) reflects the disposal of dredged material, with higher content in the two actual areas of 1967 dumping. The background level appears to be less than 4 mg/g but in the dumping ground it climbs to more than 30 mg/g. The resistance of hydrocarbon oils to breakdown has apparently resulted in a general build-up of oil and grease in this area from dredging of past years. The background level of 4 mg/g is much higher than the level in midlake of less than 0.5 mg/g. Figures 17 and 18 show the areal patterns of oil concentration in March and July, 1967. High levels in the hopper dredging dump (Figure 17) indicate the source to be the river, but river sediments were not dumped there this year.

Phosphorus


11000

River sediment phosphorus concentrations (Figures 3 and 19) are lowest at the river mouth, rising to a point 3.5 miles upstream, then declining farther upstream. River sediments averaged about $\frac{1}{4}$ mg/g or 8 lbs/ton dry weight phosphorus. This is equivalent to $\frac{1}{4}$.8 pounds per cubic yard of in-place sediment or $\frac{1}{4}$.80 pounds per 1350 cubic yard scow load.

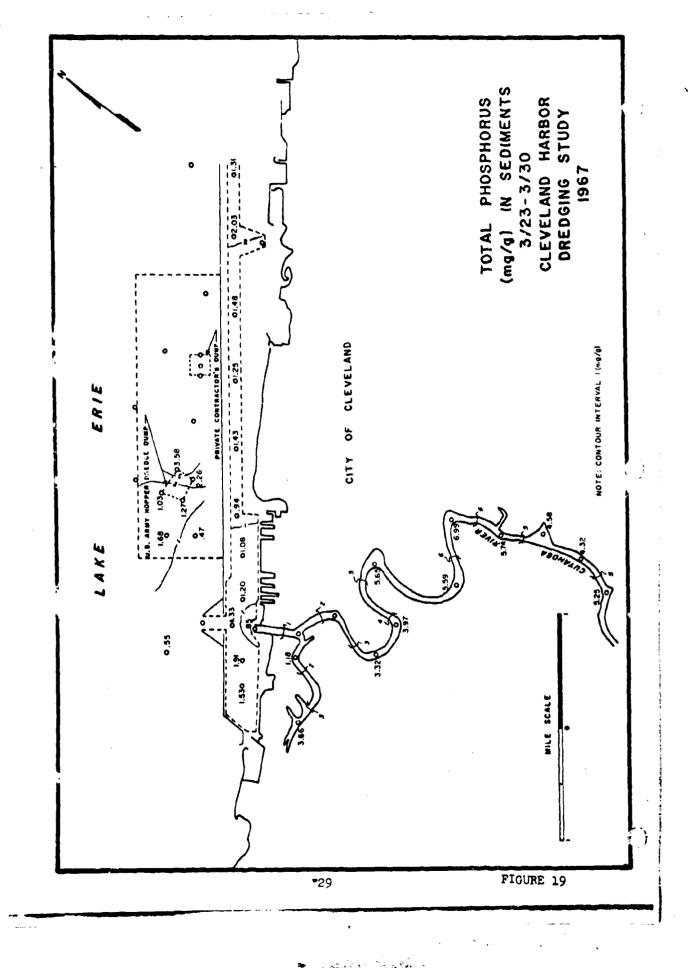
7

The state of the s

Thus 3,710,000 pounds have been removed in the past year from river dredging. This is equivalent to nearly all of the known phosphorus discharges to the Cuyahoga River.

The phosphorus level in the outer harbor sediments (Figure 5) was fairly constant, averaging about 1.5 mg/g or 3 lbs/ton dry weight. Thus a 850 ton hopper would contain 2,550 pounds and 596,000 pounds were removed by hopper dredging in the past year.

Only a few phosphorus analyses of dumping area sediments have been made (Figure 19) although more will be made. Higher values in the hopper dump indicated the presence of both river and outer harbor sediments.


Nitrogen

Total nitrogen in the Cuyahoga River sediment was time-variable. The first samples in March 1967 showed much higher nitrogen content, especially ammonia, than later samples, probably because of slower breakdown of ammonia in winter, resulting in accumulation.

The average total nitrogen content for all sampling in the river was about 5 mg/g or 10 lbs/ton and the content rose upstream (Figure 3). This figure may be low for estimating removal because much of the material was removed when concentrations were higher. Assuming however that the average concentration in removed sediment was 5 mg/g, the concentration per cubic yard of in-place sediment was about 6.0 pounds. This gives a total of 4,647,000 pounds removed during the past year.

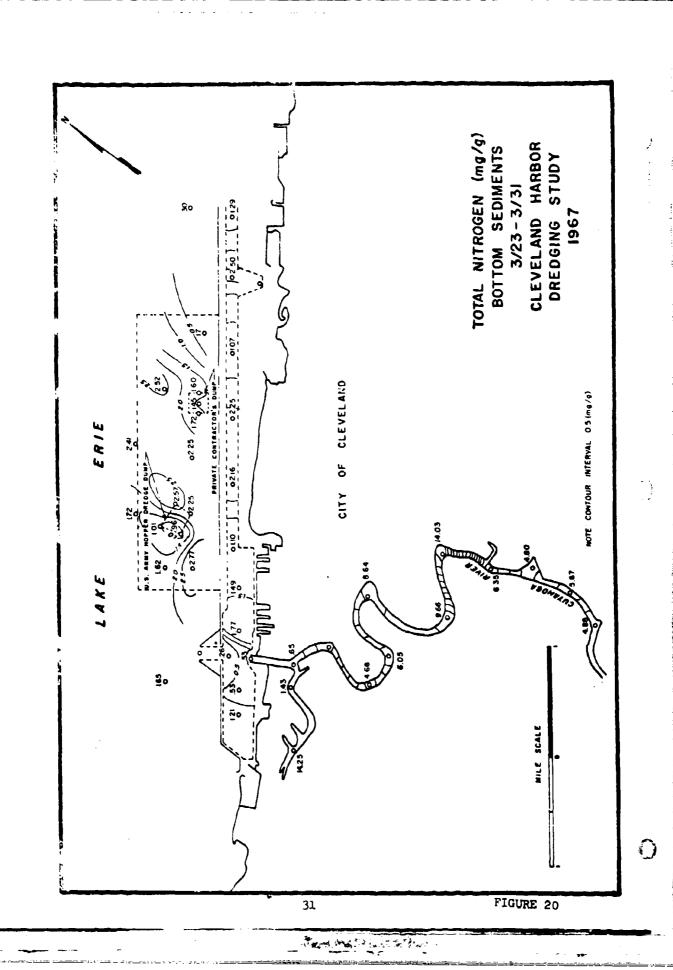
In the harbor the nitrogen concentration was more uniform, and much lower (Figure 5), averaging 1.6 mg/g dry weight or 3.2 lbs/ton.

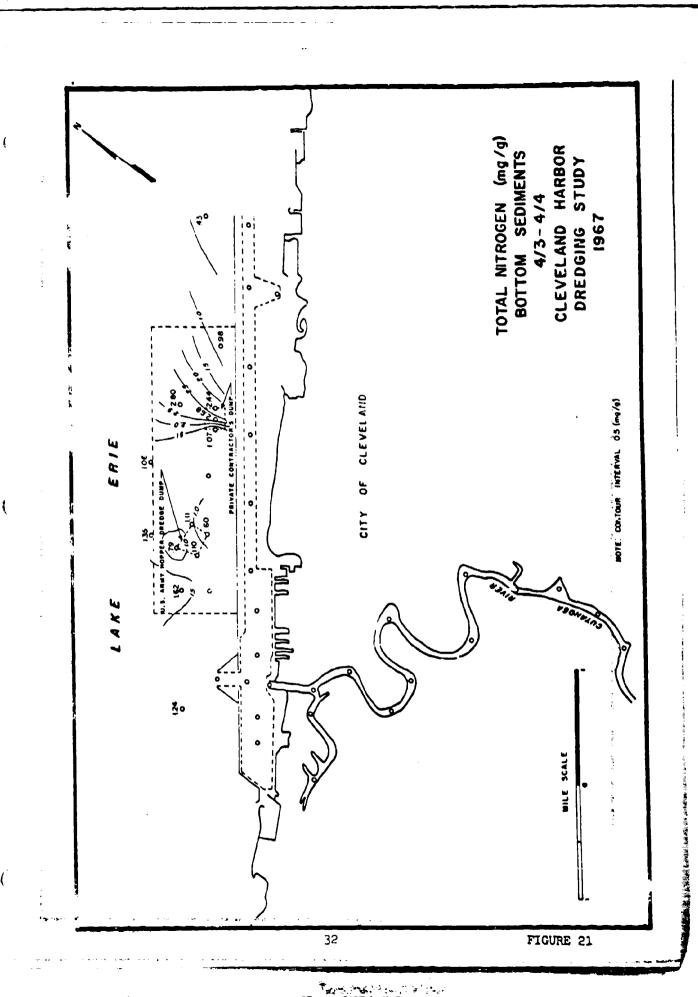
A 800-ton hopper load would contain 2,560 pounds. This rate applied

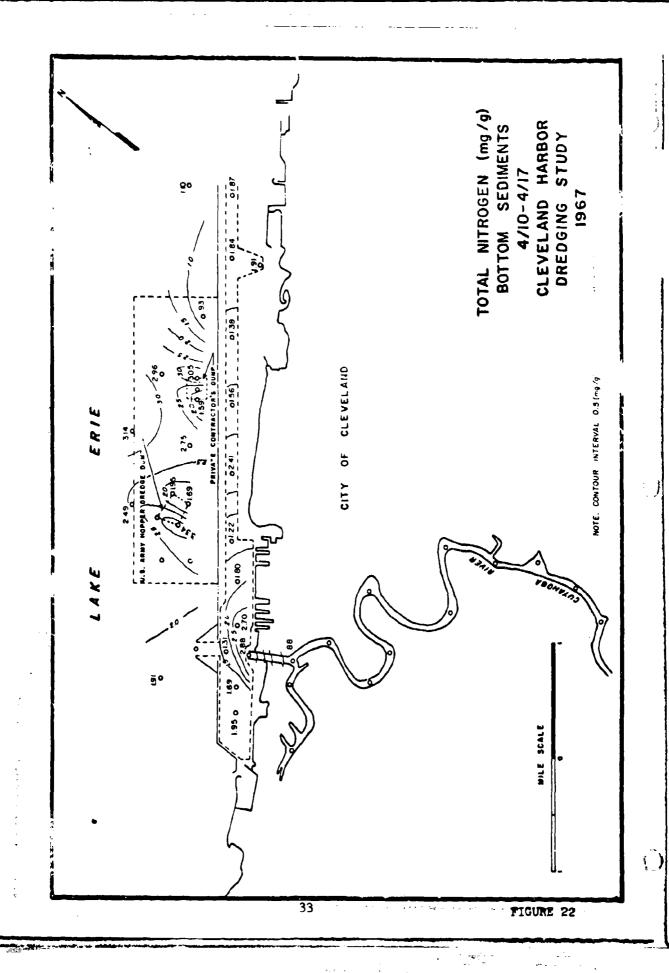
to the past year's dredging gives 636,000 pounds removed for that period.

Total nitrogen in the dumping ground varied considerably with time (Figures 20 through 24). The river dump is most apparent (Figure 7), and the hopper dredge dump became less conspicuous with time in regard to nitrogen (Figures 22 and 23).

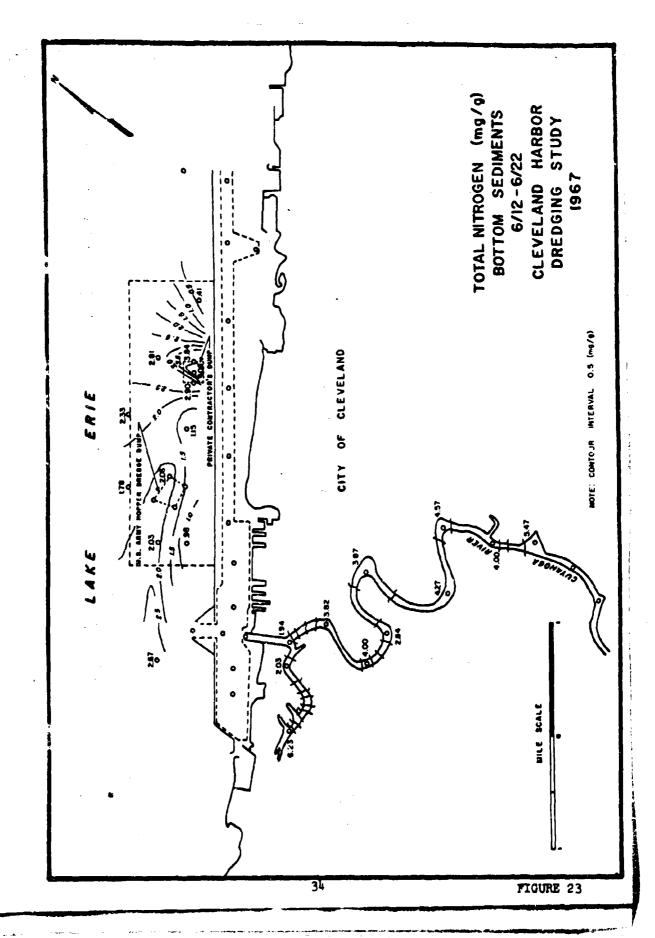
Total Iron

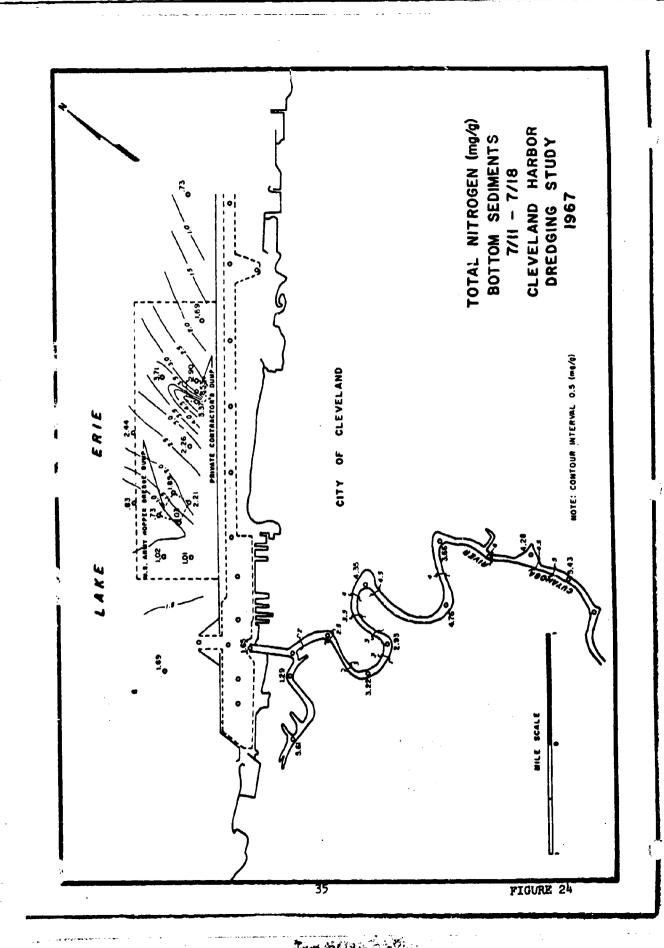

The iron content of the river sediments is high. Only samples taken on the first sampling run have been analyzed for iron, but those analyses showed an average concentration of about 110 mg/g or 220 lbs/ton dry weight above one mile from the mouth (Figure 3). Near the mouth the concentration drops to about 30 mg/g. Using an average of 110 mg/g or132 pounds per cubic yard of in-place sediment, a scow load contains 178,000 pounds of iron and 101,980,000 pounds were removed from the river in the past year.


Iron content of the outer harbor sediments averaged about 45 mg/g or 90 lbs/ton dry weight (Figure 5). This gives 76,500 pounds per 850-ton hopper load and 17,885,000 pounds for the past year.

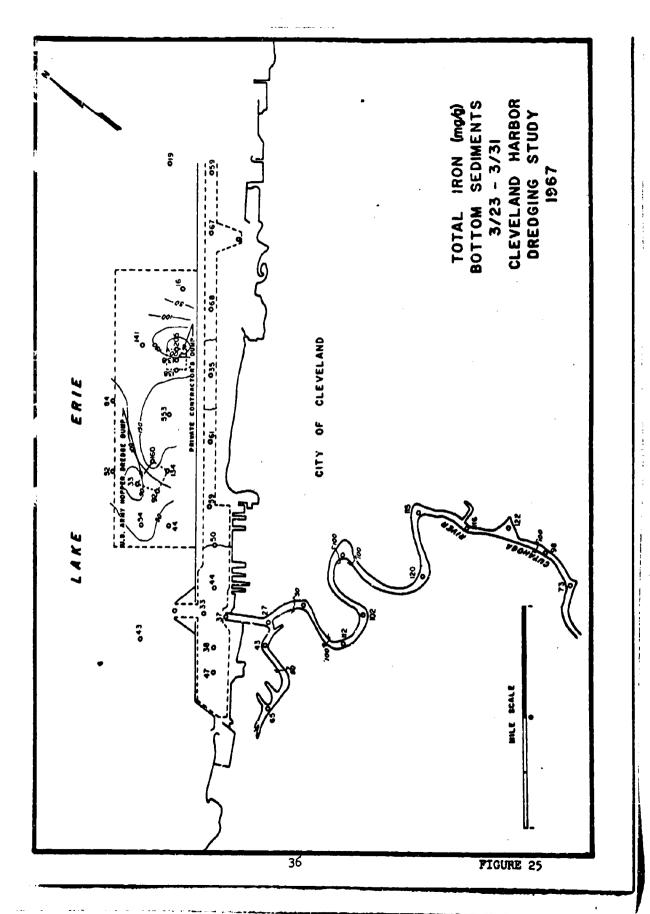

Total iron in the dumping ground sediments shows dramatically the effect of dumping (Figure 7). Concentrations exceeded those found in the harbor area with several samples above 150 mg/g (Figures 25 and 26). These higher concentrations may result from winnowing of lighter materials.

Silica


The amount of silica in the sediment is an indication of the contribution of inorganic land runoff. It is in general inversely related

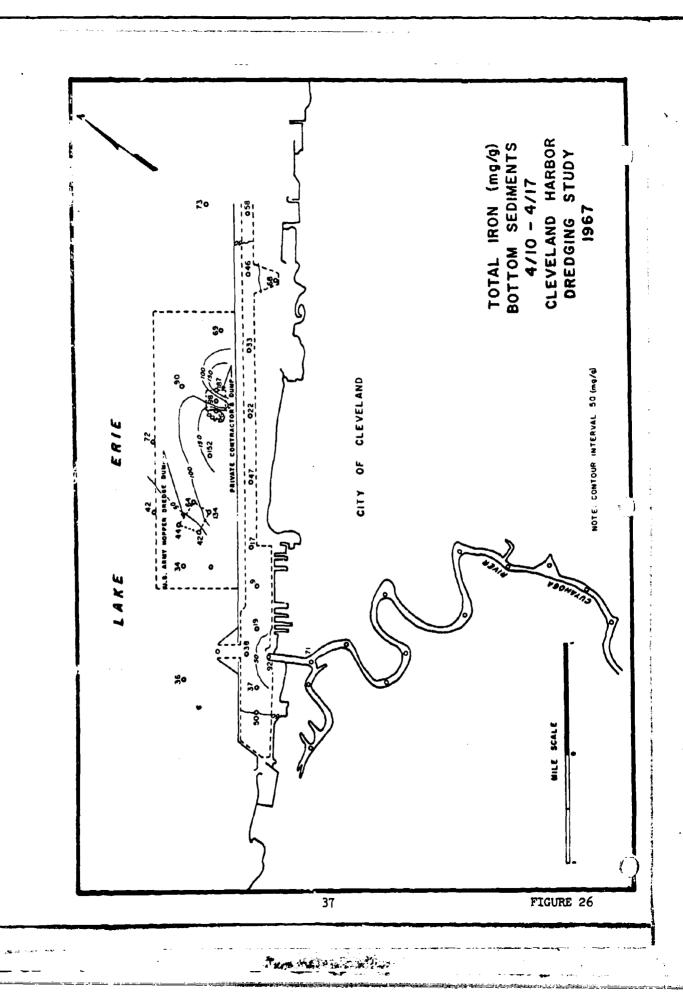


The Marie Land



<u>.</u> .

Com Mary with the


-1

Ţ

(

The Marie Section 19 and

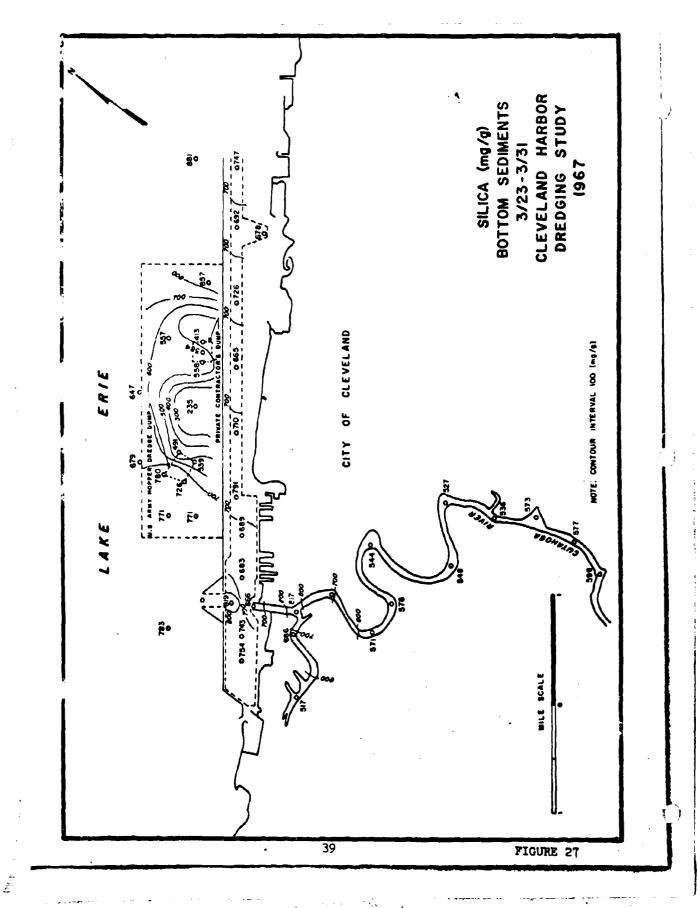
· ·

to volatile solids content in this area. The river sediments average about 550 mg/g dry weight and the outer harbor 720 mg/g. The lake bottom in the vicinity of, but outside the dumping ground appears to generally exceed 800 mg/g. Silica concentrations are shown in Figure 27.

Sediment Load Summary

Table 2 summarizes the loading to Lake Erie of various constituents as a result of dredging during the past year.

TABLE 2


LOADINGS TO LAKE ERIE FROM CLEVELAND HARBOR
AND RIVER DREDGING - 7/1/66 to 7/1/67

	River (tons)	Harbor (tons)	Total (tons)	
Chemical Oxygen Demand	110,000	19,000	119,000	
BOD	7,100	·1,000	8,100	
Chlorine Demand (15 min.)	14,000	2,400	16,400	
Volatile Solids	58,000	13,000	71,400	
Oil and Grease	16,000	1,600	17,600	
Phosphorus	1,860	300	2,160	
Nitrogen	2.300	320	2,620	
Iron	51,000	9,600	60,000	
Silica	270,000	140,000	410,000	
Total dry solids	460,000	200,000	660,000	

It has been stated that dredging carries materials to the lake which would eventually be transported to the lake naturally. This is not a valid assumption and could not be until after the deepened harbor had filled to its natural sediment level at essentially the level which existed before the artificial channels were dredged.

The Corps of Engineers reports some 15 million cubic yards of

Trees Press land to The

A constitution of the second

material removed from Cleveland Harbor during the past ten years,
more than half of which was removed from the river portion of the
harbor. Cleveland Harbor requires more volume of maintenance dredging
than any other harbor on the Great Lakes.

Silica accounts for about 59 percent of the total solids (by weight) in the river sediments and 70 percent in the harbor sediments. This indicates that one-half or more of the total sediment is derived from runoff.

Table 3 compares the average concentrations of sediment constituents in the river, outer harbor, dumping grounds, and central Lake Erie. Analyses of midlake sediments made in 1963 are used in this comparison.

Note that apparent inconsistencies occur in volatile solids and in total iron. Concentrations in the scow dump exceed those in both the river and harbor. Also note the similarities between Outer Harbor and midlake sediments with the exceptions of oil and great and COD.

TABLE 3

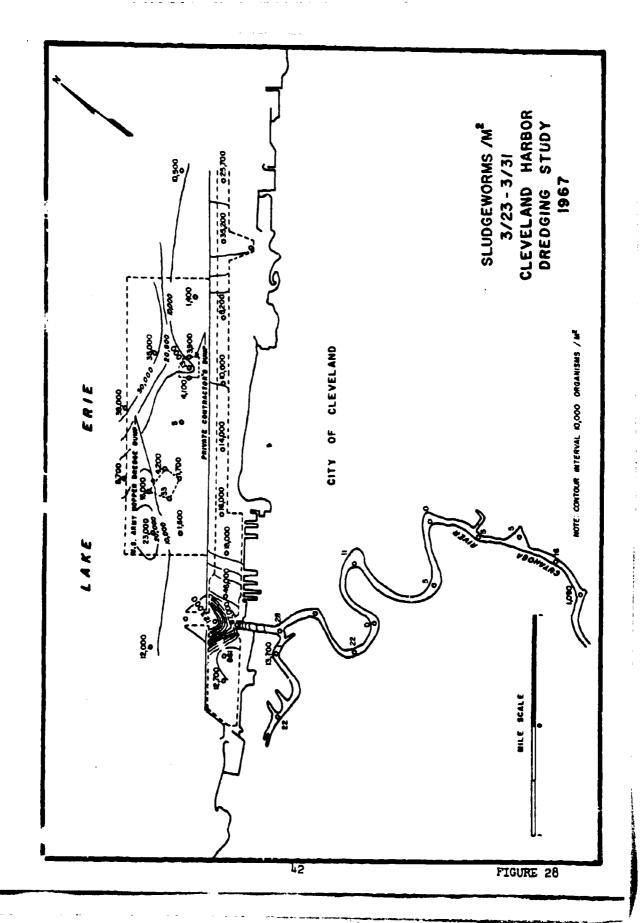
AVERAGE CONCENTRATION COMPARISON FOR VARIOUS AREAS (mg/g dry weight)

Constituent	River	Outer Harbor	Entire dump area	Hopper Dump	Scow Dump	Central Lake Erie
Chlorine demand	30	12				<i>*</i> ~
BOD COD	240 15	95 5	107	106 6	178 10	41
Volatile Solids	125	65 65	71	67	140	63
Oil and Grease	35	8	9	10	15	0.4
Phosphorus	4	1.5	1.8	2.2	2.5	0.7
Nitrogen	5	1.6	1.9	1.6	2.7	1.9
Iron	110	45	92	90	150	35
Silica	550	720	6h5	655	535	

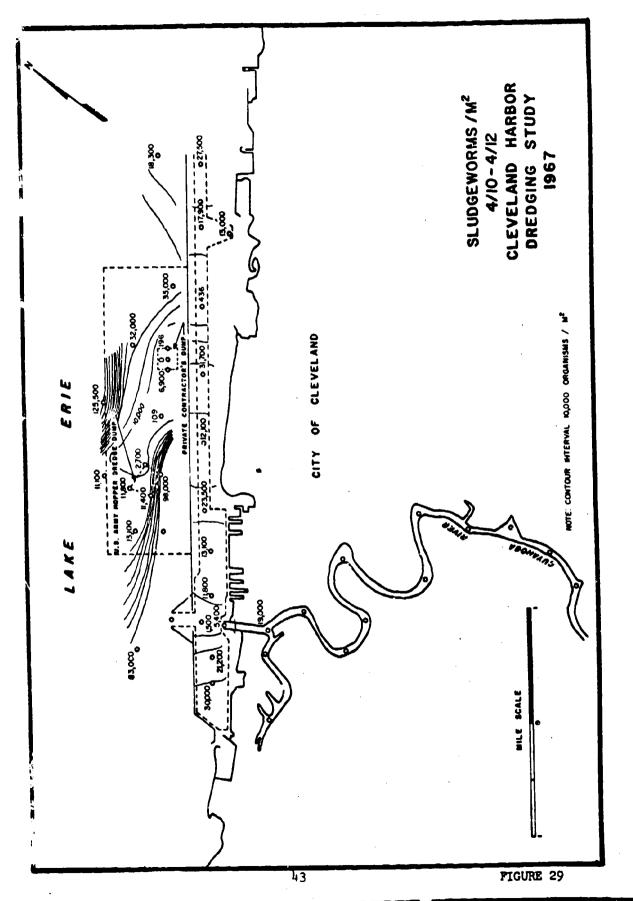
Benthic Biology

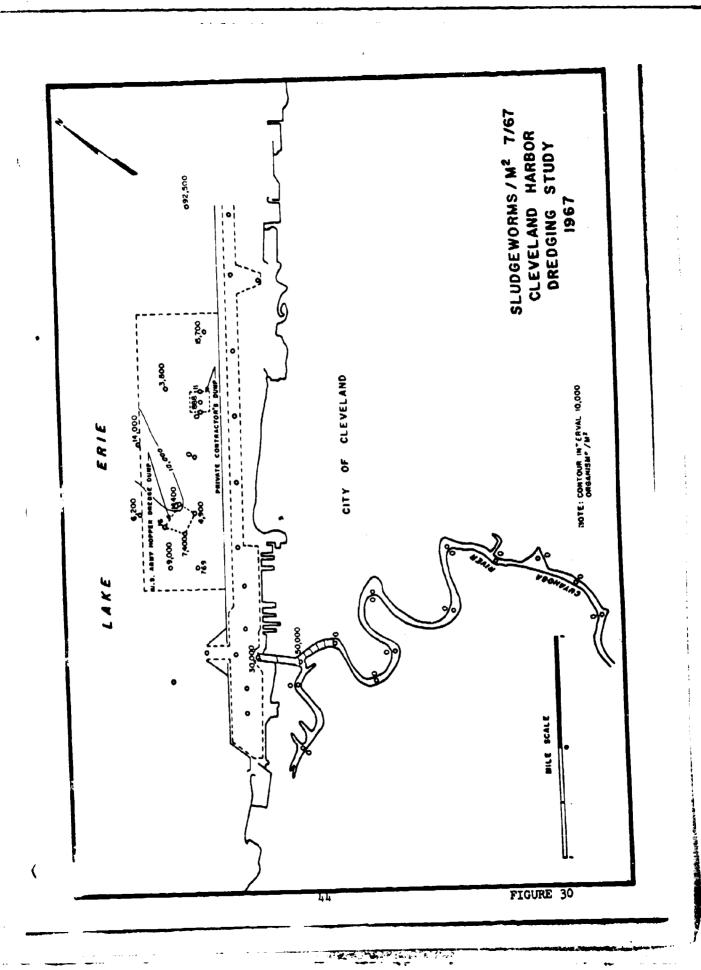
Wherever benthic organisms have been found, sludgeworms were by far the most predominant and they were essentially the only organisms found in the river.

Benthic organisms (sludgeworms) were present in very low numbers in the river in March 1967 (Figure 28). Their numbers increased slightly at the upper end of the navigation channel and greatly near the river mouth. By July there were no benthic organisms in the river except in the lower half mile. Depletion of dissolved oxygen may account for their disappearance. Their near-absence in March suggests the possibility of toxic substances in the sediments.


Benthic organisms in the outer harbor in March and April were rather abundant (Figures 28 and 29). Sludgeworms were overwhelmingly dominant, but significant numbers of fingernail clams and a few snails were also present.

Changes in benthic populations between March and July in the dumping ground sediments were dramatic (Figures 28, 29, and 30). In March the populations were similar to the outer harbor, in early April they were much higher; in July the populations were severely reduced. Comparison of Figures 29 and 30 indicates that initial dredge dumping may have increased populations but that continued dredging (mainly river sediment) was highly detrimental to benthos, perhaps by smothering or by introduction of toxicants.


WATER ANALYSIS


It is difficult to show significant lasting effects on water

()

ก็**แ**นะใหม่งคลได้ละได้ถ

quality in the vicinity of dredging and dumping. Temporary local effects occur such as depression of dissolved oxygen levels and increase of suspended solids. For example oxygen levels were depressed by as much as 25 percent in the area of hopper dredging and by up to 35 percent near the bottom in the scow dump area. Suspended solids in these areas ran up to 200 mg/l where normally they would be less than 50 mg/l.

Other chemical parameters of the water anywhere in the study area were not out of the range expected in the absence of dredging. The same conclusion also applies to microbiological and biological parameters. Of course to be considered is the fact that background values of most of these are relatively high. If the dump area were farther out in the lake it is likely that effects on water would be more readily apparent.

Table 4 lists the ranges of some chemical and microbiological constituents in the waters of the river, the outer harbor, the dumping ground, and mid-lake. As expected, there is a general decline lakeward in the concentration of most constituents.

Total phosphorus and soluble phosphorus in the river water are very low compared to the quantities being discharged to the river. Since phosphorus concentrations in the river sediments are remarkably high, precipitation must be occurring in the navigation channel. It is assumed that iron-bearing waters discharged primarily by steel plants cause the precipitation.

TABLE 4
CONCENTRATION RANGES OF WATER CONSTITUENTS

Constituent	River	Outer Harbor	Dumping Ground	Central Lake
Total P mg/l	0.17-1.53	0.08-0.55	0.03-0.20	0.02+
Soluble P mg/l	0.05-0.30	0.03-0.16	0.01-0.17	0,003-0.066
Organic N mg/l	0.28-2.88	0.22-1.93	0.12-1.58	0.25±
Ammonia N mg/l	2.60-4.36	0.36-2.42	0.02-1.90	0.00-0.39
Nitrate N mg/l	0.73-1.45	0.43-1.50	0.53-0.78	0.00-0.84
Chloride mg/l	83-294	32-90	24-56	19-46
Phenol µg/l	6-747	1-86	0-30	<1
Total Solids mg/l	403-936	219-585	162-374	159-218
Dissolved Solids mg/l	339-828	173-428	160-322	140-239
Conductivity umhos/cm	620-1320	260-620	310-420	254-353
Coliforms/100 ml	9,000-	1,400-	300-	<100
	1,000,000	58,000	33,000	

Table 5 gives a further brief breakdown on total coliforms for the river, harbor and dump.

TABLE 5

AVERAGE COLIFORM CONCENTRATIONS
(org/100 ml)

Date	River	Harbor	Dump
3/23-3/28/67	74,000	10,300	
3/30-3/31/67		13,000	3,200
4/3-4/4/67	~-		2,700
4/10-4/17/67	~-	27,500	4,900

As stated previously, no correlation is apparent between coliform concentrations and dredging. For example in the dump area it appears that similar concentrations, due to river outflow and effluent from

Cleveland's Westerly Sewage Treatment Plant, would have occurred regardless of dredging. And, as stated previously, dumping in water fartner from shore, probably would have shown some contamination.

MISCELLANEOUS MEASUREMENTS

Settleability tests have been made on river sediments. These tests were crude but showed several interesting things. For instance:

- Sediments dumped into either distilled water or lake water disaggregate rapidly, the amount of disaggregation being directly related to water depth.
- Plocculation is not possible in distilled water so that colloidal suspended sediment is noticeable indefinitely. Some flocculation, due to divalent cations occurs in lake water, settling is more rapid, but the top water will not clear for several days.
- A long and indefinite period is required in quiet water for material to settle to the volume it originally occupied in the river.
- 4. Plocculation and settling occurs rapidly with the addition of alum. However the floc is light and probably easily transportable.
- 5. Chlorination in relatively large quantities (50 mg/l[±]) causes stabilization of most materials resulting in better settling but also creates a very offensive odor due to the formation of chlorophenols.
- 6. Mixing of sediment and water (simulating hopper dredging) increases settling time and compaction time due to solid break-up.

These rough lab tests have indicated the desirability of more precise tests which are presently being planned.

A bioassay of the effects of the addition of river sediment to lake water on algae and minnows has been done also in a rough fashion in the laboratory. This kind of work will continue and be refined, but the first indications are (1) that there is little if any effect on fish

47

relative to direct toxicity and (2) after a few days a plankton bloom occurs in the sedimented tank but not in the control tank. The water was continuously aerated. It has also been found that with continuous aeration of river water, plankton blooms will occur and that the addition of river sediment will cause greater blooms. Plankton are scarce in the river however.

Another rough experiment was made to determine the effect of the most polluted sediment of the river on an established lawn. The first indications in this case are that the material is beneficial in areas where retention of moisture is desirable. It also has a slight fertilizing effect on grass and a much greater fertilizing effect on weeds. It might be quite useful as a soil conditioner. It was expected that the oil content might be harmful but this has not been indicated. After drying, oil is no longer apparent and it does not reappear when the sediment is rewetted.

TENTATIVE CONCLUSIONS

Although analyses on all samples have not yet been completed, and additional experiments appear necessary, some tentative conclusions can be drawn.

Immediate Effects of Dredging

River dredging - This dredging, except at the mouth of the river, is done under contract by clamshell and mud scows. It can be concluded that this is an effective and fairly efficient method of sediment removal which, in the Cuyahoga River, causes minimal disturbance in overlying water quality.

The disturbance of water quality is manifested mainly by a temporary increase in turbidity and the creation of additional oily scum and debris on the water surface, all in the immediate vicinity of the dredge. The additional material may be carried downstream during higher flows, but this has not been observed during the study.

Any change in chemical or microbiological water quality which might result from clamshell dredging is so relatively minor that it is completely masked by the high river background concentrations.

Lack of algae in the river water indicates lack of adequate light due to turbidity and that substances are present which at least inhibit growth. It is not likely that enough water is transported to the lake in this dredging to have any measurable effect on lake water quality. This is not true of sediments which also apparently contain some biological inhibitors, as indicated by scarcity of benthos even when the river water is oxygen-saturated.

When the Cuyahoga River becomes less polluted than at present, the immediate effects of dredging will be proportionately greater so that these conclusions will no longer be valid.

Microbiological effects could not be judged in the dumping ground water. Changes were in the range expected in the area without dumping. This perhaps is because of rapid dispersal and natural die-off of the organisms or perhaps because of materials' toxicity to bacteria.

Long-term Effects of Dredging

In the Cuyahoga River there are no known harmful lasting effects of dredging; instead there is beneficial reduction of noxious materials. In the outer harbor dredging may increase the ratio of organic to

i)

inorganic sediment, thus tending to maintain lower oxygen levels near the bottom and in the sediment.

The dumping ground bottom is oily sludge in an otherwise clay and gravel area. The bottom organisms are practically all sludgeworms. The oily sludge may contain substances toxic to bottom organisms. The sludge is spread over a wide area and the breakdown of substances is unknown.

Large quantities of nutrients, nitrogen and phosphorus, are added to the lake. Nitrogen compounds break down relatively easily reinforcing the supply of inorganic nitrogen for production of aquatic life. Phosphorus compounds, once they have become part of the sediments, are released very slowly except under certain conditions of pH and dissolved oxygen content of the overlying water. It must be considered however that phosphorus will become available for biological production, and that all phosphorus discharged to the lake has this potential. The rate of release will be directly proportional to the concentration in the sediments and the area over which it is spread. The rate will also be controlled by the chemistry of the overlying water, i.e. pH and dissolved oxygen content.

Outer harbor dredging - This dredging is done by hopper dredge which, of course, is vastly different from clamshell dredging. Efficiency of this method is determined almost entirely by slurry retention time in the dredge and settling time of disaggregated material. In general, higher content of in-place organic material results in lower efficiency of removal because much if not most of this material is discharged via the hopper overflow. This could lead to an increase

Turn Marie Salaman Plan

in the organic content of the sediment remaining after dredging.

The immediate effects in the outer harbor of hopper dredging upon water quality are an increase in suspended (mainly organic) solids content and a depression of dissolved oxygen levels. These effects do not extend any great distance beyond the dredge vicinity. Dissolved oxygen levels will drop, for example, from 90-100% saturation to 65-70%. More severe depression may occur but it was not found during this investigation. It is not likely however that levels are sufficiently depleted to have any significant adverse effect on biology.

Benthic populations in the harbor appear to decrease in the area of dredging. If this appearance is real, it is probably because of removal of the organisms rather than suppression.

Changes in chemical or microbiological character of the overlying water in the immediate vicinity of hopper dredging are minimal and are within the ranges expected without dredging.

<u>Dumping Ground Deposition</u> - The dumping of dredged material for the past year was divided into two small areas as shown on Figure 1, one area for outer harbor hopper dredging and the other for river dredging.

Other than an increase in suspended solids there were no significant immediate effects on the overlying water at the beginning of dredging. As time went on however it appeared that dumping of river sediment was reducing the oxygen content of the lower waters by as much as 20 percent.

Benthic organisms increased over most of the dumping ground just

()

after the beginning of dumping, except at the site of river dumping. With continued river sediment dumping, the populations decreased, suggesting toxicity and lateral spread of the material. The spread is unknown but apparently went beyond the areal limits of the study.

The bottom sediments over most of the dumping ground are generally objectionable with a significant oil content. The condition became more severe as dumping progressed. This was expected. Considerable spreading over the bottom occurred and this was also expected.

It is apparent that spreading of the dumped materials can be rapid and a fair percentage is immediately removed in suspension from the area. Much of the material is immediately deposited but it then is subject to creep, flow, and re-suspension. Although it has not been investigated, it is possible that some of the dumped material from the present dumping area finds its way to shore, especially to the east of Cleveland.

Changes in chemical and bacterial water quality over the dumping ground are minimal except just above the bottom in the river dump area where significant increases in dissolved solids were sometimes shown during dredging.

Changes in water quality, attributable to dredging, have not been shown at any of the City of Cleveland's four water intakes.

The phosphorus content of Cuyahoga River sediments is high, on the order of 15 times the average content of land sediments which are not artificially enriched. It can also be assumed that these sediments will be distributed over a large area of the lake and the potential harm is great.

52

There I will be seen to be

TENTATIVE RECOMMENDATIONS

Several interim recommendations can be made as a result of the investigation thus far. They are listed as follows:

- 1. The present Cleveland dumping ground should not be used in the future for the dumping of any dredged material.
- 2. River sediments should not be deposited anywhere in the lake; instead they should be confined and prevented from reaching the lake or the outer harbor.
- 3. Hopper-dredged outer harbor material should temporarily (until study is completed) be dumped in deep water about 10 miles from shore where bottom sediments are similar in some respects to those of outer harbor.
- 4. Hopper sediments should be discharged near the bottom not into surface water to lessen dispersion.
- 5. Hopper sediments should be discharged during colder months in unstratified water, to lessen possibility of prolonged sediment suspension on the thermocline.
- 6. Hopper dredging should include flocculation of incoming slurry if possible; chlorination could also be desirable.

Sediment dumped into a confined (diked) water area will likely require treatment. The most important treatment probably will be flocculation and chlorination. Filtration of effluent may not be critically necessary. Oil skimming may be required. Dumping into a slip and hydraulically transferring material from there into the diked area at Cleveland may cause serious degradation of outer harbor sediments unless escape of materials from the slip is prevented.

A final recommendation for disposal of outer harbor sediments may depend upon a limiting level of oil and grease in the sediments. Other measured constituents do not appear to be more harmful than those already existing in mid-lake sediments.

APPENDIX A 5

Suppary of Findings
Cleveland Diked Dredging Disposal Area Investigation
1 9 6 8

OCTOBER 1968

U. S. DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
GREAT LAKES REGION
CLEVELAND PROGRAM OFFICE

The Mark State of the State of

INTRODUCTION

STUDY PURPOSE

The Corps of Engineers and the Federal Water Pollution Control
Administration are evaluating present dredging techniques and studying
alternate procedures for the disposal of polluted harbor dredgings with
the altimate objective of providing leadership in the nationwide effort
to improve water quality through prevention, control, and abatement of
water pollution by Federal water resources projects. For the long-range
permanent plan a pilot program of experimentation has been initiated to
investigate all alternate disposal and treatment methods, and evaluate
pollution abatement results.

Eight localities were selected as pilot study areas: (1) Green Bay Harbor, Wisconsin, (2) Calumet Harbor, Illinois and Indiana, (3) Indiana Harbor, Indiana, (4) Detroit, Michigan, (5, Toledo, Ohio, (6) Cleveland, Ohio, (7) Buffalo Harbor, New York, and (8) Great Sodus Bay, New York. Study areas were selected on the basis of the pollution level of the dredged sediments and availability of alternate disposal sites.

This report presents data and findings resulting from the Cleveland Pilot dike study. It includes an evaluation of the disposal and treatment methods employed, and an evaluation of the pollution abatement results.

Cleveland was selected as a pilot study area because of the high pollution level of the dredged sediments from the Cuyahoga River, convenience for field experimentation, and availability of an alternate disposal site. The study plan included the disposal of a portion of the Cuyahoga River

2)

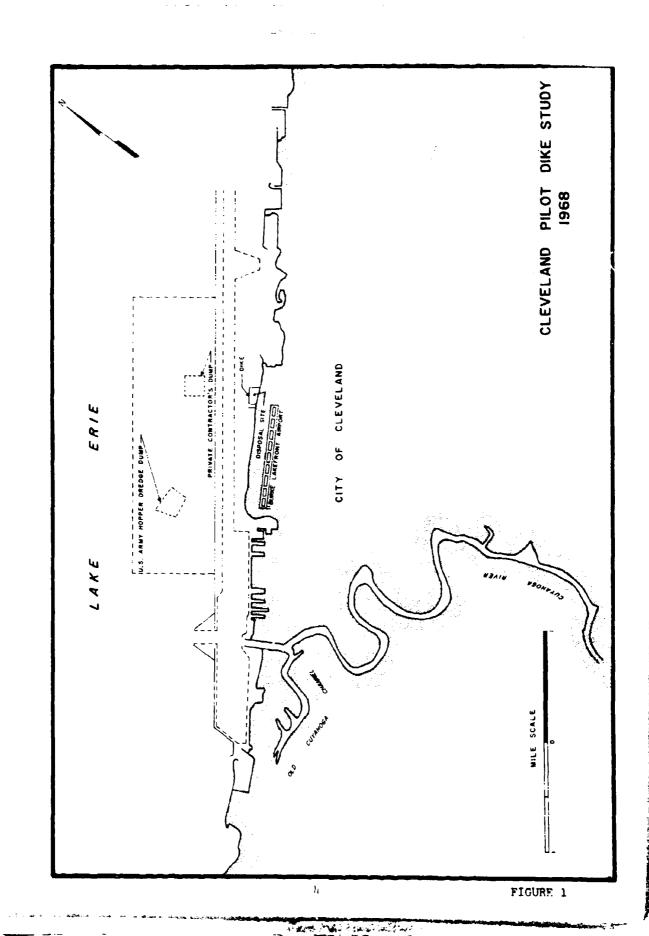
dredgings from the Spring 1968 dredging operation into a diked disposal area located in the Cleveland east outer harbor. Two methods of disposal were to be used: (I) pump directly from scows into the diked area, and (2) pump the material from the slip into the diked area. The study would also include an evaluation of the performance of an air barrier constructed across the opening of the slip and treatment of the diked supernatant in a portable water treatment plant.

DESCRIPTION OF AREA

Greater Cleveland Harbor consists of an outer harbor and the lower part of the Cuyahoga River (Figure 1). The outer harbor, sheltered by breakwaters, is about 5 miles long and 500 to 1,500 feet wide. The Cuyahoga River navigation channel, nearly six miles long, averages about 200 feet in width.

Cleveland Harbor requires more volume of maintenance dredging than any other harbor on the Great Lakes. The Corps of Engineers reports some 15 million cubic yards of material removed from the Cleveland Harbor during the past ten years, more than half of which was removed from the river portion. The outer harbor is dredged hydraulically by Corps dredges while the river is clamshell dredged under contract.

The lower Cuyahoga River and navigation channel throughout the Cleveland area is, in effect, an open sewer. The river is choked with debris, oils, scums, floating globs of organic sludges, and dissolved solids. Foulsmelling gases rise from decomposing organic materials on the river's bottom. The river has a chocolate-brown or rust color.


The inadequately treated wastes from the Cleveland Southerly Sewage

Treatment Plans, and an undetermined number of combined sewer overflows discharge huge quantities of oxygen-demanding wastes, nutrients and bacterial contamination to the river. These domestic wastes are joined by the discharges from the major industrial complex in the Cleveland area. The industrial discharges include large quantities of solids, metals, oil, sulfates, ammonia, acids, and other materials.

The outer harbor area receives the discharges from the Cuyahoga River and numerous storm water and combined sewer overflows. The water quality varies with meteorological conditions especially the wind which frequently allows lake water to enter the harbor. Due to density differences, lake water frequently underruns or overruns the water of the outer harbor and lower reaches of the Cuyahoga River.

Two lake disposal sites were established to hold the disposal of dredgings from the Cuyahoga River and outer harbor. One disposal site, unused since 1957, is located nine miles due north of the Cleveland West Pier Head Light. The disposal site is two miles long by one miles wide. The lake disposal site presently in use is located along the lake side of and parallel to the east breakwater (Figure I). It is three-quarters of a mile wide and two and one-half miles long. An area 1,500 feet square located in the western portion of this disposal site is used for disposal of dredgings from the outer harbor. A second area approximately one thousand feet square located in the eastern portion of the same disposal site is used for disposal of Cuyahoga River dredgings.

The Cleveland pilot study called for construction of a diked disposal area (completed in December 1967) in the eastern outer harbor area,

2.7

(Figure 1). A stip was constructed parallel to the west side of the dike to accommodate dredging equipment and transfer of dredged materials.

The location of the dike is exposed to Cuyahoga River discharges, numerous storm water and combined sewer overflows, and lake water, depending on metereological conditions. Three of the numerous combined sewer overflows are in close proximity to the diked area (Figure 2). The overflows are connected to the Easterly Interceptor sewer. The 33rd Street sewer discharges directly into the south end of the dike slip. The proximity of numerous waste discharges and the variable water quality in the harbor make the site unfavorable as a study area.

The dike. (Figures 2 and 3), constructed from 286,000 tons of lime-stone and dolomite, was designed to act as a filter. The dike core and filter bed were constructed from Type B and Type C limestone. The exterior riprap was constructed from Type A dolomite. The void space for the Type A stone is estimated as 25 percent and for the Type B and C stone is 30 percent, (Corps of Engineers).

Dimensions and other pertinent data concerning the dike and adjacent slip include:

Dike			
Length	880	ft.	
Width (west end)	430	ft.	
(east end)	500	ft.	
Diked Area (before dumping)			
Average water depth	24	ft.	
Surface area	387,000	ft. ²	43,000 yd. 2
Bottom area	277,000	ft. ²	$31,000 \text{ yd.}^2$
Water volume	7.920.000	ft.3	293,000 yd. ³
Total volume to	10,050,000	ft. ³	372,000 yd. ³
top of dike	•		
Silp			
Length	420	ft.	
Width	220	ft.	
Yo I ume	1,673,000	ft.3	62,000 yd. ³

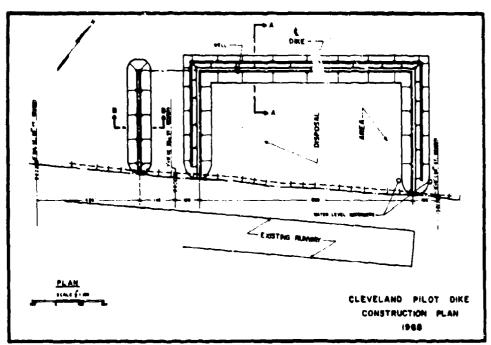


FIGURE 2



FIGURE 3

All calculations are referred to a lake elevation of 571 feet above International Great Lakes datum.

To assist sampling, a well was constructed in the dike about 130 first northeast of the northwest corner. The well was constructed from a parforated steel pipe extending to the bottom of the dike, having an inside diameter of 21 inches.

Water level recorders were installed inside and outside the southeast corner of the dike.

STUDY METHODS

The sampling schedule was designed around dredging and pumping schedules (Table I). The first method of disposal into the diked area began May 1, 1968 and continued until June 12, 1968. The second method of disposal began June 21, 1968 and continued through August 1, 1968.

Analytical field and laboratory methods are given in the "Laboratory Manual, Cleveland Program Office" except for special methods which are described in this report.

Scow samples were obtained by compositing five one-quart grab samples from each of eight scow compartments prior to dumping. Grab samples were taken at various depths in each compartment with a specially constructed sampling device. This cylindrical sampler, attached to a long pole, has a mechanical tripping mechanism to obtain a mud sample from any depth in the scow.

The dredge influent dilution water samples were obtained by compositing half-gallon grab samples at half-hour intervals during pumping. The samples were taken at a depth of five feet below the surface of the slip

TABLE !

**

CLEVELAND PILOT DIKE STUDY 1968 SAMPLING SCHEDULE

Date	Water in Oike	Water Outside Oike	Water in Well	Portable Water Plant	Dredge Influent Water	Slip Effluent	Oredge Effluent	In Place Sediment	Sc ow Sedim ent
	F 1,2							٦.٠	
5	•							٦.	L
!	Commenced	First	Method of Disposal	posat					
_ ~:	LL (L L	L. U.	L				ĹĿ		۴.۱
æ	F.L	F. L			F.L				F.L
<u>د</u>	٠.٠				 .				٠,٠
5 K	ب. س با	ہ۔ سا نہ	F. L		<u>ب</u> ن				۳.
80	F.L	`LL.	LL.		F.L				F. L
. 2	F.L Completed	F First 1	Wethod of Disposal	posal	F.L				۲.
4								F.L	
6/15 5/17	Two scow	loads dump loads dump	ed into st	scow loads dumped into slip for base scow loads dumped into slip for base		ι			
- 60 0	٦.٠			F.L		L			
· <u>-</u> •	Commence	Commenced Second Me	Method of Disposal	sposal					
4 v		L		٠.		u.			
တ္ထ	u_					u .	F.L		
,	Aerial P	Aerial Photographs taken	taken			۳.			

- Part John Carlotter

TABLE 1 (Concluded)

Ţ

CLEVELAND PILOT DIKE STUDY 1968 SAMPLING SCHEDULE

Date	Water in Dike	Water Outside	Water	Portable Water	Dredge Influent	Slip Effluent	Dredge Effluent	In Place Sediment	Scow Sediment
		2		1 0 0	agrer.				
1/3						L			
6/1				- L		-			
01/1	LL.								
01/1	Air Barı	Vir Barrier Activat	vated						
67/1) }	F. 1					
1/31	F. L			•					
8/1	Complete	Completed Second Me	Method of Disposal	lesous					
8/15	-							-	
8/21	F.L							٦.٠	
8/29	F.L	H.							

^f - denotes samples taken for in-field determinations

 $^2 \mathsf{L}$ - denotes samples taken for laboratory determinations

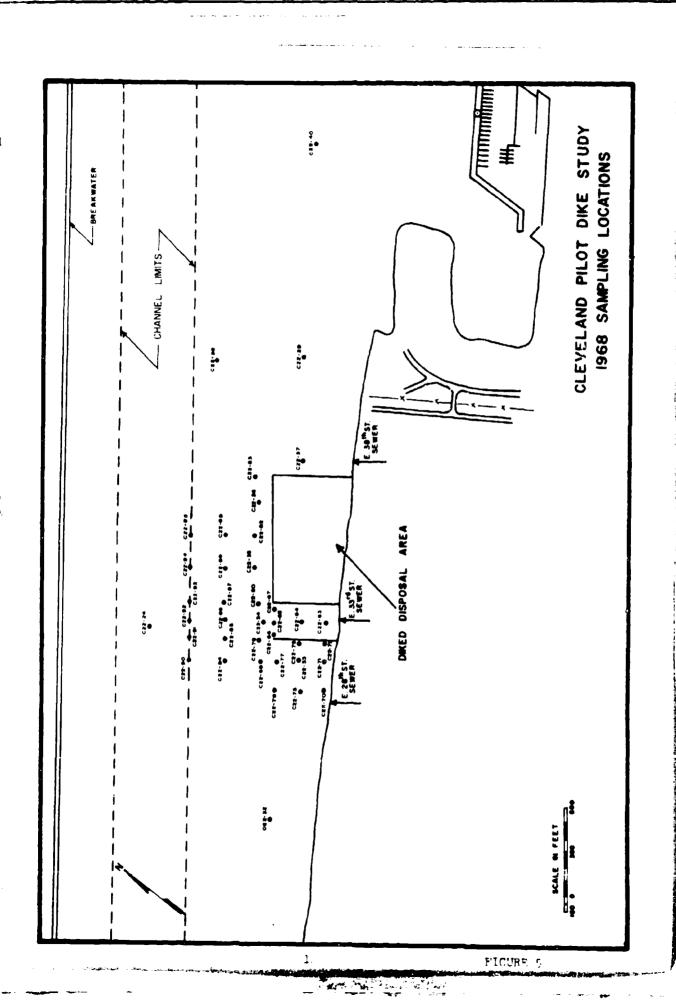
()

at the inlet pipe to the pump.

Water in the diked area was sampled at five locations (C22-41, A, B, C, D, and E) just prior to pumping (Figure 4). Field measurements for temperature, dissolved oxygen, pH, conductivity, and transparency were made at each of the five locations. Laboratory determinations were performed on surface and bottom samples composited from the five locations. Bottom sediment samples were taken outside the dike at several locations (Figures 4 and 5) before dumping, between dumping phases, and after all dumping was completed. These samples, for chemical and biological analyses, were taken with a Peterson dredge. In addition many water samples were taken outside the dike.

METHODS OF DISPOSAL

DREDGING METHOD


Maintenance dradging of the Cuyahoga River is routinely performed under contract to the Corps of Engineers. Due to extensive sedimentation, two contracts are awarded annually, one in the spring and one in the fail. A total of 524,965 cubic yards (scow measure) were dredged from the Cuyahoga River under the Spring 1968 contract.

River channel sediment was removed with a clamshell type dredge. A total of 88 workdays (107 calendar days) were required to dredge the specified quantity of material. The dredge operated round-the-clock when conditions permitted.

The clamshell dredge placed the dredged material into scows for transport to the disposal site. The scows, having bottom dump capabilities, have a maximum capacity of about 1,300 cubic yards. The scows were towed

~<u>.</u>Ţ

to the disposal sites in pairs by tug at the rate of one pair per work shift. However, river traffic and weather were controlling factors. A total of 422 scows were loaded during the course of the contract.

A total of 90,647 cubic yards were disposed in the diked area, while the balance of the dredgings, 434,318 cubic yards, were disposed by conventional methods in the open-lake disposal area adjacent to the breakwall.

DISPOSAL PUMPING

The pilot program specifies two methods for placing dredgings into the diked area: (1) pump the dredgings from the scows directly into the diked area, and (2) pump the dredgings from the slip into the diked area. Method 1

To pump dredgings directly from the scows into the diked area, the contractor moved on site a dredge equipped with a special suction head. The dredge was secured in the slip along the west side of the dike. A discharge pipe, laid over the dike and supported on pontoons, extended to near the center of the diked area. The scows were moored in the slip to pilings adjacent to the dredge. The suction head was constructed to simultaneously jet slip water into the scow and pump the diluted material from the scows. The suction head could be lowered or raised to different elevations in the scow. Pumping was intermittent due to debris and sediment clogging the pump. The dredge effluent was observed to vary in consistency from slip water to that of the scow sediment.

One scow load was pumped into the diked area each day. The volume varied from 200 to 1,311 cubic yards (scow measure) (Table 2). A total of 45,555 cubic yards were placed in the diked area by this method. Daily pumping times varied from 15 minutes to 4 hours and 15 minutes.

i)

TABLE 2

CLEVELAND PILOT DIKE STUDY

METHOD I

QUANTITIES DEPOSITED IN DIKED AREA AND PUMPING TIMES

1968

May I	2 2 1 4 4 2 1 4 3 1	30 45 00 30 00 15 00 35 15
3 400 4 841 5 1,289 6 1,285 7 1,216 8 1,242 9 1,187 10 1,234 11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	 4 4 2 4 3 	00 30 00 15 00 35
5 1,289 6 1,285 7 1,216 8 1,242 9 1,187 10 1,234 11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	1 4 2 1 4 3 !	30 00 15 00 35 15
5 1,289 6 1,285 7 1,216 8 1,242 9 1,187 10 1,234 11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	4 4 2 1 4 3 1	00 15 00 35 15
8 1,242 9 1,187 10 1,234 11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	4 2 1 4 3 1	15 00 35 15
8 1,242 9 1,187 10 1,234 11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	2 	00 3 5 15
8 1,242 9 1,187 10 1,234 11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	1 4 3 1	35 15
9	4 3 !	15
10 1,234 11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	3 ! !	
11 1,204 12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	! 	VU
12 1,238 13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	1	15
13 200 14 400 15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239		15
15 0 16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	0	15
16 1,005 17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	I	00
17 772 18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	0	00
18 1,121 19 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	4	00
19 20 1,144 20 1,101 21 1,123 22 1,239 23 1,212 24 1,225 25 1,239	2	15
20	2 3 2	00
21	2	15
22 1,239 23 1,212 24 1,225 25 1,239	2	30
23 1,212 24 1,225 25 1,239	1	30
24 I,225 25 I,239	2	10 05
25 1,239	2 2	10
	1	45
20	i	50
27 1,255	i	50
28 1,170	i	30
29 1,204	ł	45
30 0	0	00
31 1,278	i	45
June 1 1,148	2	40
2 1,190	1	40
3 1,052	1	45
4 1,223	!	45
5 1,100	2	20
6 971	1	45
7 1,170	~	00
8 1,245	2 1	50

TABLE 2 (Concluded)

CLEVELAND PILOT DIKE STUDY METHOD I QUANTITIES DEPOSITED IN DIKED AREA AND PUMPING TIMES 1968

Date	Quantities Deposited cu.yds.(scow measure)	Pumping Time Hrs. Min.
June 9	1,125	I 50
10	1,253	1 40
11	1,245	! 55
12	1,203	2 00
Total	45,555	

The dredgings required dilution with slip water to permit pumping.

It was initially estimated that the dilution would be in the ratio of

2 parts water to I part sediment. The flow varied for both the influent
water and the dredge effluent. No continuous flow measurements were
obtained. Based on recently obtained percent solids and pump data, (Corps
of Engineers) the average ratio of water to sediment is estimated at 5 to

1. The total volume (sediment and dilution water) pumped into the diked
area during the first method of disposal was estimated as 273,000 cubic
yards.

Method 2

The second mathod of disposal into the diked area consisted of bottom dumping the scow sediment into the south end of the slip. Using a hydraulic dredge equipped with a rotating cutting head, the sediment was then pumped from the bottom of the slip into the diked area. The method of discharge to the diked area was the same as that used in Method I except for a baffle plate on the end of the discharge pipe. To prevent removal of the natural slip sediment, four scow loads of scow sediment were dumped into the south end of the slip to serve as a base. Subsequently, two scow loads were dumped every other day on top of the base. The material was dredged from the slip at the rate of approximately one scow load per day. A total of 45,092 cubic yards (scow measure) were disposed using this method. The total input (sediment and water) to the diked area is estimated as 496,000 cubic yards using a ratio of 10 parts water to 1 part sediment (Corps of Engineers). Daily quantities deposited into the diked area varied from 997 cubic yards to 1,347 cubic yards (Table 3). Pumping times varied from 2 hours 15 minutes to 7 hours 20 minutes.

The Marie Barre

TABLE 3

CLEVELAND PILOT DIKE STUDY

METHOD 2

QUA:TITIES DEPOSITED IN DIKED AREA AND PUMPING TIMES

1968

Date	Quantities Deposited cu.yds.(scow measure)	Pumping Time Hrs. Min.
June 21	1,347	3 05
22	1,292	2 45
23	1,321	3 00
24	1,137	3 00
25 26	1,313	3 00 4 00
20 27	1,147 1,204	
28	1,204 1,292	3 25 2 15
26 29	1,292	3 55
30	1,104	3 55 2 20
July I	1,307	3 00
	1,281	3 10
2 3	1,215	2 50
4	0	0 00
5	1,292	3 05
5	1,136	3 00
7	0	0 00
8	997	2 25
9	1,200	3 00
10	1,302	3 00
11	1,162	3 15 3 00
12	1,296	3 00
13	1,237	3 10
14	0	0 00
15	1,172	3 00
16	1,161	3 00
17	1,292	3 00
18	1,292	3 00 3 00 3 00 3 00 3 00 3 00
19	1,270	3 00
20	1,270	3 55
21	1,292	3 00
22 23	1,137	3 00 3 00 3 00
23 24	1,178	
24 25	1,141 1,193	3 00 3 00 3 35
26 26	1,193	3 35
20 27	1,205	
2 <i>1</i> 28	1,226	2 30
29	1,220	3 30 2 30 3 00
2 3	1,020	, 00

()

Table 3 (Concluded)

CLEVELAND PILOT DIKE STUDY METHOD 2 QUANTITIES DEPOSITED IN DIKED AREA AND PUMPING TIMES 1968

Date	Quantities Deposited cu.yds.(scow measure)	Pumping Time Hrs. Min.
July 30	1,121	7 20
[*] 31	Clean up	5 00
August I Total	Clean up 45,093	2 50

Yardage shown are from individual scows credited to each day's pumping and are not the exact yardage pumped each day.

The study plan included the installation of equipment to form an air barrier across the open-ended slip to prevent the escape of sediment dumped into the slip. The air barrier was created by air bubbles released from 61 perforated, weighted air lines laid across the bottom of the outer 150 feet of the slip. The study plan called for disposal into the slip for the first two weeks without the air barrier in operation. During the second two weeks the air barrier would be operated continuously at half capacity and during the last two weeks the air barrier would be operated continuously at full capacity. However, due to problems in design, installation, or operation, the air barrier did not perform as planned. An air curtain was not created, thus there was no effect on the containment of material.

DESCRIPTION OF DIKE ENFLUENT

The sediment transported to the diked area was very similar to the river sediments as analyzed in 1967. Table 4 is a summary comparison of the 1967 river sediment sample data and scow samples taken during this study.

Since water from the dike slip was used as pump dilution water for all the sediment placed within the dike, its constituents must also be counted in the load to the diked area. Table 5 lists a summary of the analyses of the slip water and compares them to averages in the outer harbor and to the diked water prior to dumping.

Total loads of various constituents to the diked disposal area are summarized in Table 6 along with dike effluent loads and percent retention. Loads are based upon the reported sediment volume of 90,647 cubic

<u>()</u>

TABLE 4

COMPARISON OF 1967 RIVER SEDIMENT SAMPLING AND 1968 SCOW SEDIMENT SAMPLING

Parameter	1967 River Sediment mg/k	1968 Scow Sediment mg/g
Chlorine Demand	32	33
Chemical Oxygen Demand	240	196
Total Solids	490	480
Volatile Solids	125	133
Oll and Grease	35	36
Total Phosphorus	4.0	3.9
Kjeldahi Nitrogen		3.2
Total Iron	110	139
Lead		0.46
Nickel		0.09
Chromium	~~	0.24
Cadmium		0.02
Cobalt		0.19

TABLE 5

COMPARISON OF HARBOR, SCOW SLIP, AND DIKED WATER BACKGROUND DATA

(mg/l except as note:)

	Outer Harbor 1967	Scow Silp 1968	Dike Water 1968
Chlorine Demand		15	
Suspended Solids	41	38	2
Volatile Suspended Solids		21	0
Total Phosphorus	0.17	0.09	0.05
Kjeldahl Nitrogen	1.90	2.02	1.23
Lead		0.058	
Nickel		0.090	
Chromium		0.034	
Cadmi um		0.010	
Cobalt		0.025	
Phenois	0.010	0.003	0.005
Total Coliforms/100 ml	17,000	5,800	150
Fecal Coliforms/100 ml	. ,	1,500	2
Standard Plate Count 35°/m	ı	29,000	310

TABLE 6

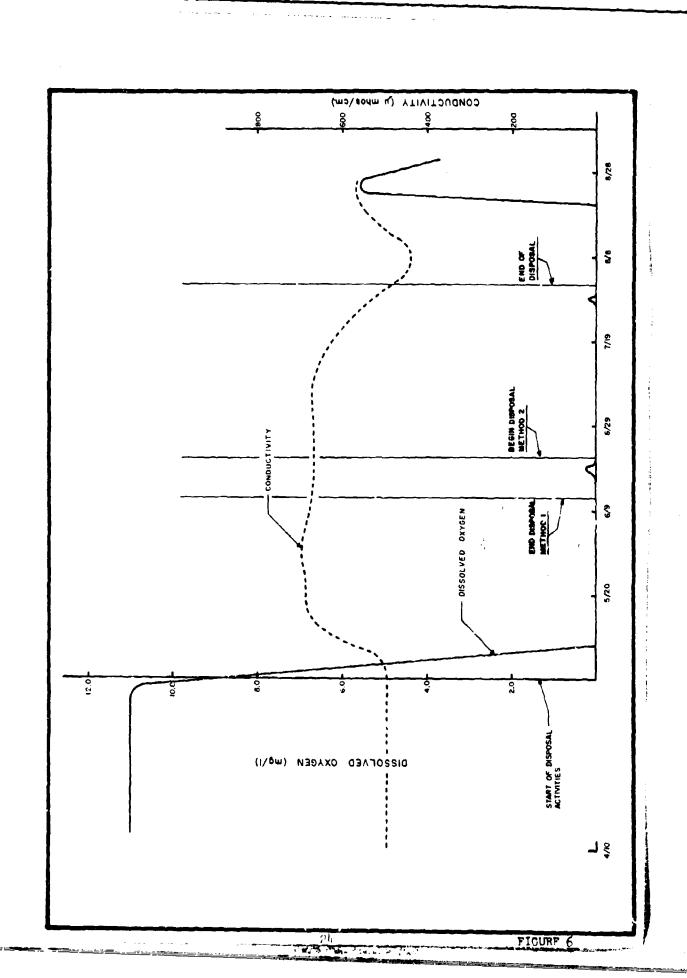
LOADS TO DIKED AREA Tons

	Scow Sediment	Dredge Dilution Water	Total Load to Dike	Dike Effluent	Dike \$ Retention
Total Solids Total Suspended Solids Volatile Suspended Solids Total Volatile Solids Chiorine Demand (15 min) Chamical Oxygen Demand Total Phosphorus Total Kjeldahl Nitrogen Oll and Grease Phenols Total Iron Lead Nickel Chromium Cadmium	54,000 1,720 1,750 10,500 215 2,000 2,000 7,500 13	0.01 0.05 0.05 0.05	54,500 7,200 10,500 215 176 2,000 7,500	255 62 17 17 0.5 0.05 0.06 0.05 0.06	99.6 99.9 99.7 99.9 99.9
Cobalt	-	5			

n analysis not made

yards plus influent pumping water volume of 679,000 cubic yards.

DESCRIPTION OF DIKE EFFLUENT


TOP WATER

The dike effluent shall be considered equivalent in quality to the top water (supernatant) in the diked area during both methods of disposal. It was not possible to obtain a representative sample of the dike effluent because of its slow seepage through the dike and immediate dilution with harbor water. Calculated effluent loads of various constituents are shown in Table 6.

Prior to the first method of disposal, the supernatant was high in dissolved oxygen averaging 92 percent of saturation at 11.0 mg/liter. The conductivity, which measures ionic species in solution and consequently is indicative of inorganic dissolved solids, was 490 micromhos per cm. During the first day of disposal the dissolved oxygen reserve in the dike was dep. ed 10 percent. After the second day of disposal, 25 percent of the background DO was depleted. Disposal occurred daily for the following week with no further monitoring of the dike supernatant. Upon remonitoring, one week after the start of disposal, measurements revealed a complete depletion of the supernatant dissolved oxygen. The bottom waters lost oxygen at an even faster rate. During the first week conductivity measurements increased from 490 to 690 µmhos/cm, (Figure 6).

A small amount of DO was measured in the supernatant (0.3 mg/l) one week after cessation of the first method and three days prior to initiation of the second method. Conductivity measurements decreased slightly

()

during this period indicating dilution and/or some chamical reaction and settling. With the start of the second method and until completion, the conductivity increased only slightly not quite reaching the peak of the first method. During the second method the oxygen remained depleted in the supernatant with only a slight rise in DO on the last day, prior to completion.

As can be seen from Table 7, there was a huge increase in nutrients and solids with the start of dike disposal. The nutrient increases remained fairly stable throughout the study period although solids-wise large decreases toward background values were noted between methods and toward the end of the second method.

Three weeks after the study period, dissolved oxygen in the supernatant had reached 5.6 mg/l and conductivity measurements decreased toward normal (Fig. 6). The oxygen replenishment of the supernatant coincided with and resulted from huge population increases of green coccold algae mostly Ankistrodesmus sp. and an unidentified nanno-plankton. Prior to disposal the supernatant transparency was as much as 5 ft. At no time during the test, through both methods, did the transparency exceed 3 inches.

DIKE FILTRATION

The dike effluent flow is a function of the rate of disposal inputs, the permeability of the dike, and the ambient lake level fluctuations. As measured, lake level fluctuations of two or three tenths of a foot were common with occasional instances of one foot or more. Diked water levels closely coincided with lake level fluctuations except then peak levels occurred. Approximately 43,000 cubic yards of water passed through

TABLE 7

CLEVELAND PILOT DIKE STUDY
SUMMARY OF DIKED WATER CHEMISTRY AND MICROBIOLOGICAL DATA

Parameter	Before Disposal	During Method I	Between Methods	During Method 2	i After Disposal
% Sat	92	0	2	0	38
CON		618	642	647	541
рН	6.8	7.5	6.9	7.4	7.4
TP	0.05	0.89			
TK-N	1.23	21.8	27.2	17.1	7.1
TSS	2 .	121	36	83	46
VSS	0	30.8	4	25.5	28.5
Р	4.7	14.3	3.1	5.2	1.7
CI D		11.5	1.3		4.4
Pb		0.161	0.087	0.113	
Ni		0.084	0.044	0.073	
Cr		0.110	0.036	0.052	
Cd		0.012	0.001	0.006	
Co		0.015	0.008	0.009	
² TL	150	5,650	350	1,100	450
2 _{Fe}	2	950	102	540	10
² SPC-35	310	662,500	115,000	98,000	2,500

Data based on one sampling

² Median count were possible

the dike with a one-foot change in diked water level.

No head was measurably created in the diked area during either disposal method, therefore the rate of input was essentially equal to the rate of discharge from the diked area. Exclusive of water level induced displacements, a total volume of 273,000 cubic yards passed through the dike during the first method of disposal and 496,000 cubic yards during the second method.

The dike effectively retains all floating debris. Oils might eventually filter through the dike, especially in the form of emulsions or soaps, the latter resulting from reaction with the natural lye content of the original diked water. Most dissolved solids are expected to pass through the dike, at least after the first electrical and chemical reactions have taken place. The limestone and dolomite dike will electrically adsorb and chemically interact with the negatively charged colloids and anions in solution to effect their deposition and subsequent removal. Coating of the dike through filtration, in addition to electrical and chemical deposition, will eventually cover the reactive limestone and dolomite surfaces to the point where dissolved solids would pass through unaffected in character. Winds from the north will backwash the dike with harbor water, in effect partially renewing the reactive filter surfaces, at least for a short period.

in an effort to characterize the dike effluent, a well was constructed in a northern portion of the dike (see Figure 2). After initial displacement of the original water by pumping, the well was sampled on several occasions. In general the concentrations of the parameters measured were between the lower harbor and the higher diked water values. Total

suspended solids inside the well (29 mg/l) were approximately the same as found in the harbor water. From the limited solids data available it is indicated that the suspended solids (non-colloidal) are being effectively retained by the dike.

WATER PLANT EVALUATION

In the event that the supernatant should need further treatment to meet water quality standards, the efficiency of a portable water treatment plant was evaluated. Four procedures for water treatment were employed, the last three being a variation of the normal, standard treatment for potable water. These procedures included (I) coagulation, filtration, and disinfection, (2) coagulation only, (3) coagulation and filtration, and (4) filtration only. The water plant was modular in construction being composed of a combination mixing, sedimentation basin, and diatomaceous earth pressure filters. Ferric chloride was used as coagulant, lime for pH control, and calcium hypochlorite as disinfectant.

As can be seen from Table 8, for the removal of turbidity, chemical oxygen demand and nutrients, the standard treatment (coagulation, filtration, and disinfection) for producing a potable water was the most effective. As modifications from the standard procedure (elimination of acknowledged essential steps in water treatment) were made for the sake of economics, treatment efficiency suffered. In addition, the expected operational difficulties materialized - shortened filter runs, excessive chlorine demand etc. With respect to dissolved metals, no procedure was significantly effective. In this instance anionic polyelectrolyte coagulant aids most likely would have increased metals removal substantially.

Microbiological removals were greatest with the standard procedure.

TABLE 8

শ্

PORTABLE WATER TREATMENT PLANT RAW AND FINISHED WATER
CHEMISTRY AND BACTERIOLOGICAL DATA
1968
(mg/1)

Date	Type Sample	8	CON pumhos/cm	CI R	Turb	000	TK-N	₽	æ	ž	۲	3	8	TC /100 ml	TC FC	SPC-35
Method 6/18	~!		099 099 070		45	70	34	1.14	1	0.26 0.10	0.13	0.01	0.01	8,000	001	000,0001
	Fin.		0967 097 017 007	3.0 3.0 3.5	6.0	27	21	0.02	0.01	0.03	0.02	0.00	0.02	\$	~	₹
6/24	Raw Raw Fin.	0 0 0	595 595 650 650		650	143	23	5.08	0.35	0.12	0.17	0.01	0.00	800	430	Spreader 28
6/1	Raw Fin.	0 6.6	850	1.5	80 0.8	52 12	24 20	0.50	0.62	0.13	0.09	0.02	0.01	1,200	1,100	900,069
62/1	Raw Raw	000	570 690 700		120	40	17		0.10	0.08	0.04	10.0	0.01	2,300	150	24,000
	: : : : : :	6 6 5	650 650	4.0	0.7	8	91		0.09	0.06	00.0	0.01	0.00	?5	<2	ĸ

There made like the

(_)

TABLE 8 (Continued)

PORTABLE WATER TREATMENT PLANT RAW AND FINISHED WATER CHEMISTRY AND BACTERIOLOGICAL DATA 1968 (mg/1)

Date.	Type Sample	8	CON Lambos/cm	C R	CI R Turb COO	8	1K-N	1P	£	ž	ა	25	8	TC /100 ml	TC FC /100 ml /100 ml	SPC-35
Method 2 6/19 Raw 0.	N	0	ļ		\$≎	45	25	0.42	0.02	0.42 0.02 0.12 0.04 0.01 0.01	0.04	0.01	0.01	000 ′ -	Q	58,000
; ;	S. F. F.	0.2			7	21	22	90.0	0.01	C.04	0.05	0.00	0.00	8	©	200
6/1	Raw Fin.	6.6			80	52	21 20	0.50	0.03	0.10	0.09	0.00	0.00	1,200	1,100	65r,000 30
62/1		000			09									2,500	200	7,000
	Fire Fire	6.5	5649 5049 5049		4	25	91		0.03	0.03 0.04 0.00 0.01	0.00	0.01	0.00	₽	\$	12
Method 6/19	2	0.0			35	45	25	0.42						000,1	40	58,000
Rew 0.2 Fla. 6.0 Fla. 5.5	Rew Film.	0.2 6.0 5.9	680 790 780		9.0	9-	24	0.02	0.01		0.03 0.00 0.00	0.00	0.01	01 >	\$	4
1/29	R R Bay	000	595 595 600		001									006,1	150	5,300

_ A was made and all will and

TABLE 8 (Concluded)

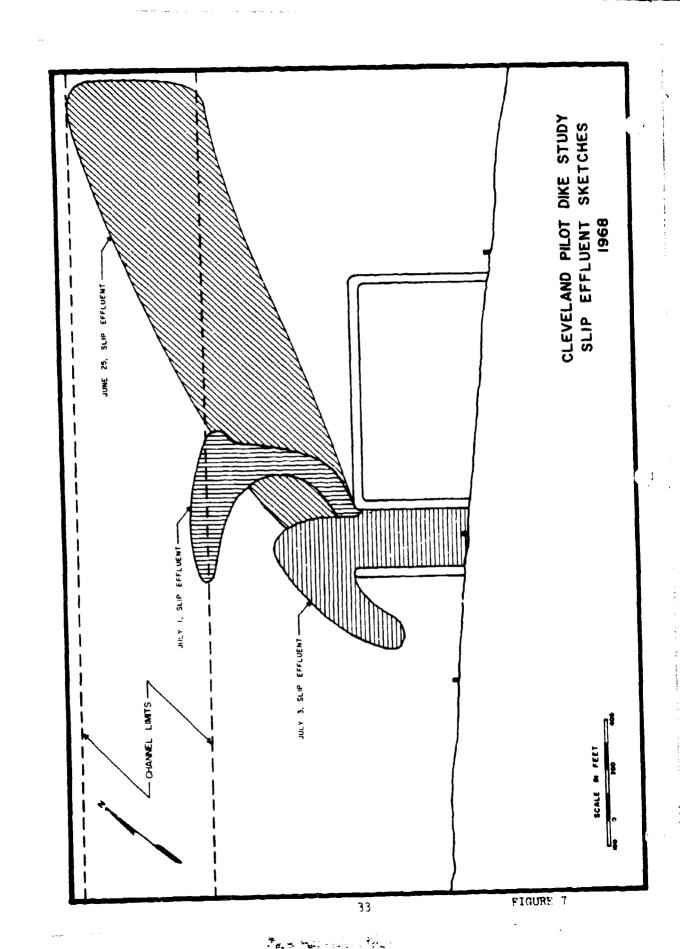
-27

PORTABLE WATER TREATMENT PLANT RAW AND FINISHED WATER CHEMISTRY AND BACTERIOLOGICAL DATA 1968 (mg/l)

Date	Type Sample	8	CON preparation	C. R	CI R Turb	8	TK-N	<u>4</u>	€	ž	ర	8	8	TC FC /100 ml /100 mi	FC /100 mi	SPC-35
Method 7/29	Method 3 (cont'd) 7/29 Fin. 6.5 Fin. 6.5	, d) 6.5 6.5	069 069		0.8	61	17		0.00	0.04	0.00 0.04 0.00 0.00 0.01	0.00	0.01	4	2	ø
Mathod 4 6/19 F	Row Row Fin.	0.2 3.2 2.6	660 660 655		45	% %	23	23 0.42 0.02 0.10 0.04 25 0.19 0.01 0.03 0.01	0.02	0.10	0.04	0.00	0.01	900	0 <i>t</i>	64,000
6/24	Row Row Fin.	0 2.7 2.7	595 600 600		90	76	24	0.50	0.27	0.11		0.01	0.00	400	310	360,000
1/29	Raw Raw Rew Fin.	0000	590 595 600		8 8	59	71		0.10	0.05	0.10 0.05 0.06 0.01	0.01	0.01	0.01 2,600	300	51,000

Proper coagulation and sedimentation are most effective in removing turbidity and bacteria. Polishing by filtration and disinfection produce a bacteriologically safe water treatment plant effluent.

CHANGES IN OUTER HARBOR DUE TO DIKED EFFLUENT


WATER QUALITY CHARACTERISTICS

The harbor water in the dike vicinity normally varies between the extremes of Cuyahoga River water and Lake Erie background, depending upon river flow and wind velocity and direction. It is likely that water flow through the harbor, although reversing direction frequently, is several orders of magnitude greater than dike effluent flow. With this kind of situation, it was futile to attempt to determine dike effluent-induced changes in harbor water. However it can be reasonably concluded that the effect was very slight, except for an occasional narrow discolored band along the dike proper.

Although dike effluent effects were relatively unimportant, changes did occur in adjacent harbor waters as a result of slip effluent during the second method of disposal, that of dumping sediment into the slip and pumping it therefrom.

Figure 7 illustrates patterns of turbidity on three occasions during the second method of disposal. These patterns were caused primarily by churning of the sitp water by the scow tug which also forced the turbid water out into the harbor, where it was carried by wind and currents.

Field measurements during the second method of disposal revealed patterns of conductivity (Figures 8 through II) and dissolved oxygen

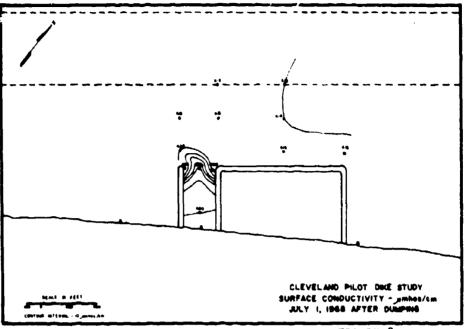


FIGURE 8

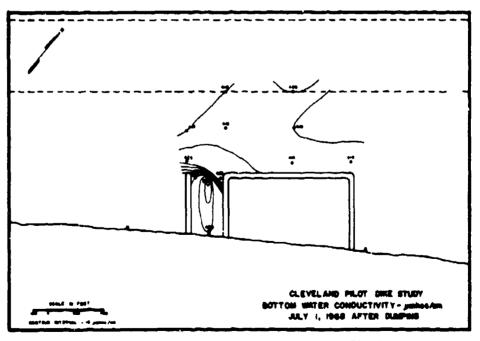


FIGURE 9

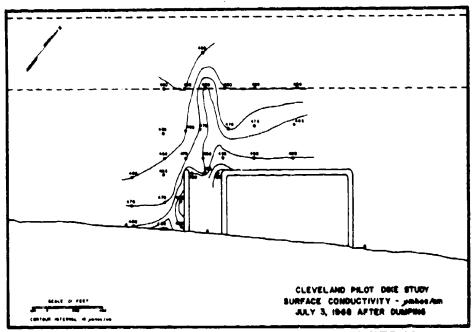
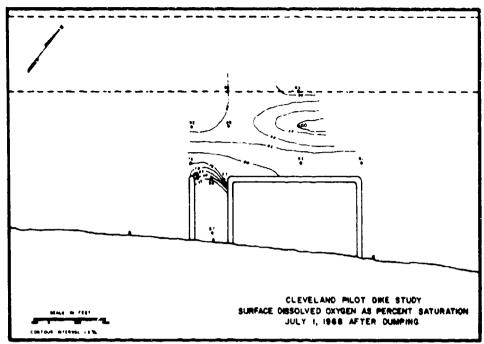


FIGURE 10

FIGURE 11

(i)

(Figures 12 through 15) which strikingly illustrate the effects of slip effluent. During the first method of disposal, (pumping directly from scows) no patterns were traceable to the slip.


SEDIMENT CHARACTERISTICS

The harbor sediments in the vicinity of the dike were analyzed chemically and biologically before disposal, between the two methods of disposal, and after disposal was completed. Although sampling for biology appeared adequate, sediment chemistry sampling left much to be desired. Chemistry sampling was done with a Peterson dredge which penetrated several inches into the soft sediments. Deposition throughout the disposal period was probably much less than that depth and the portion attributable to disposal effluent was likely only a small fraction of that deposition. Thus chemistry sampling of sediment would show measurable changes due to disposal effluent only where deposition of disposed materials was greatest, in and very near the scow slip.

The above factors must be kept in mind when examining the sediment chemistry as portrayed in Figures 16 through 35.

Figures 16, 17, and 18, show changes in chemical oxygen demand. The changes are not significant except at the mouth of the slip and in the harbor channel. Changes in the harbor channel may not be related to diked disposal. Figures 19, 20, and 21, show total iron. It remained essentially the same except for a significant increase at the slip mouth during the second method of disposal.

Figures 22, 23, and 24, total kjeldahl nitrogen, indicate that changes are probably controlled to a greater degree by factors other than disposal, since values were relatively uniform throughout the study. However

3.7

FIGURE 12

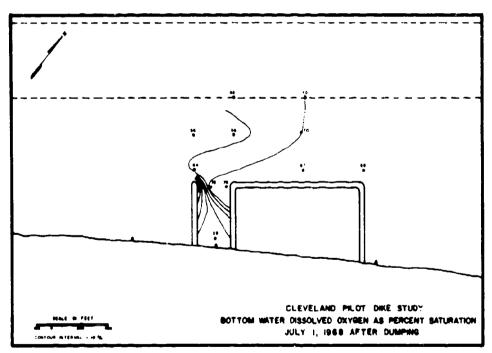
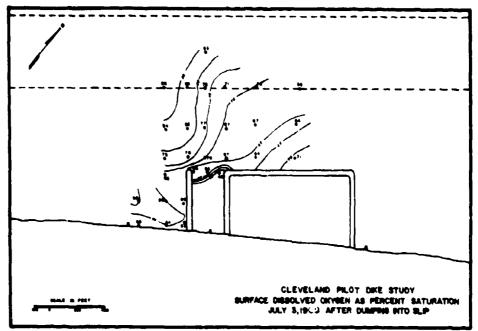
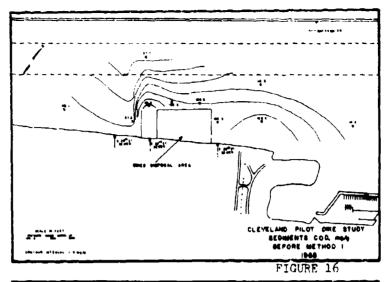
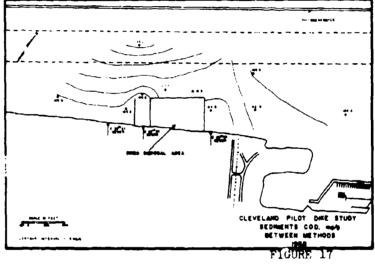
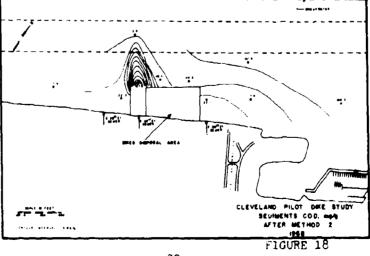


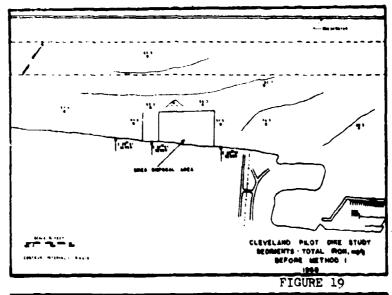
FIGURE 13

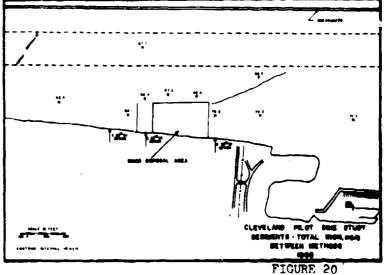
- Comment was a series

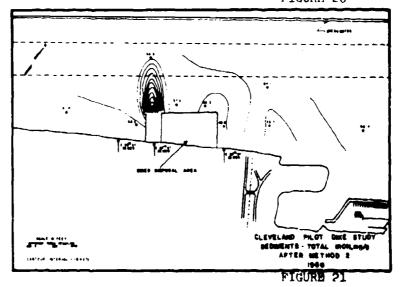



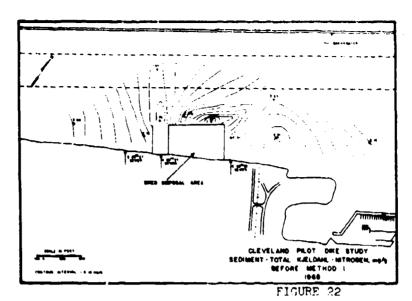

FIGURE 14

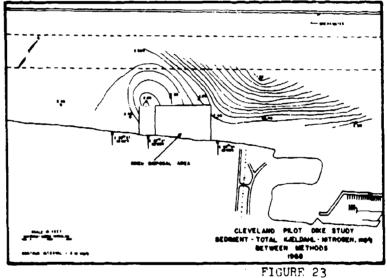


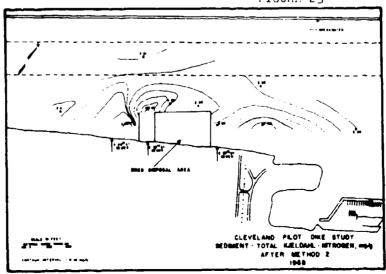

FIGURE 15

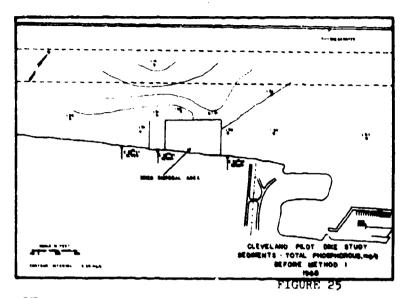

The transfer of the

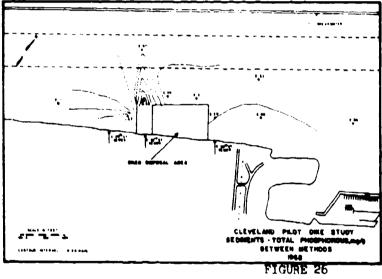


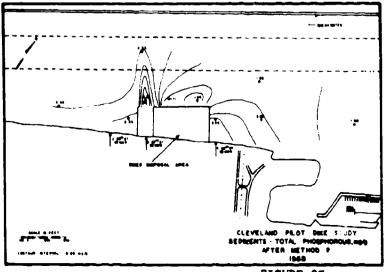


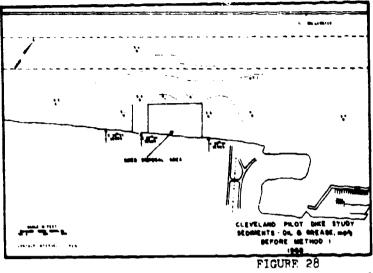


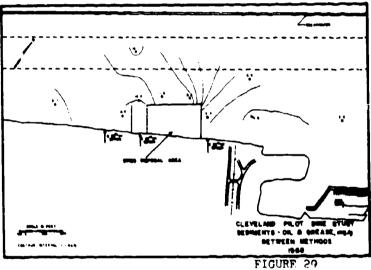


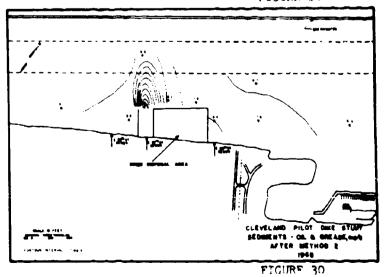

phosphorus exhibited rather dramatic changes (Figures 25, 26, and 27). In general phosphorus increased during the first method of disposal and, except near the slip mouth, declined during the second method. These changes indicate that phosphorus sectmentation phenomena from other causes overshadow the effects of disposal effluent, except very near the scow slip where phosphorus concentrations raised to and remained at higher levels during disposal.

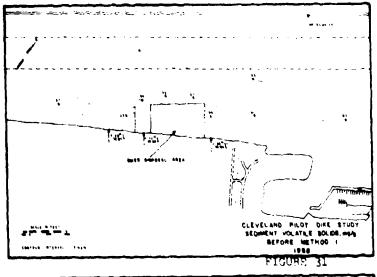

Oil and grease concentrations in the harbor sediments (Figures 28, 29, and 30) in the vicinity of the dike showed redistribution during disposal but not a significant increase except near the slip entrance and then only during the second method of disposal.

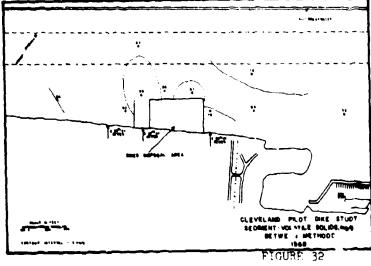

Votatile sediment solids (Figures 31, 32, and 33) decreased during the first method of disposal and then, during the second method, increased markedly near the dike. Chlorine demand (Figures 34 and 35), not measured before disposal, increased moderately during the second method of disposal.

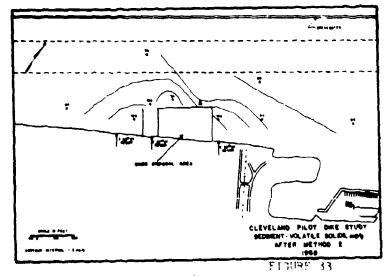

The benthic fauna of Cleveland outer harbor are dominated by Oligo-chaeta and Spheeriidae with lesser numbers of Chironomidae, Prosobranchia, and Hirudinea. Figures 36, 38, and 40 depict the Oligochaeta (sludge-worm) populations before disposal, between disposal methods, and after disposal. Figures 37, 39, and 41 show Sphaeriidae (fingernall clams) populations at the same times.


Studgeworms in the harbor in the vicinity of dike before disposal and between disposal methods showed rather wide areal variation in population with the highest at the stip entrance, possibly in response to the sewer discharge into the stip. During the second method the total









The Marian State

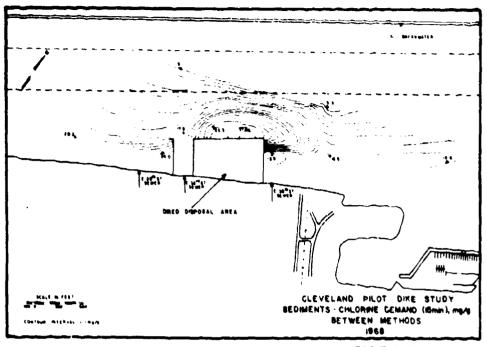


FIGURE 34

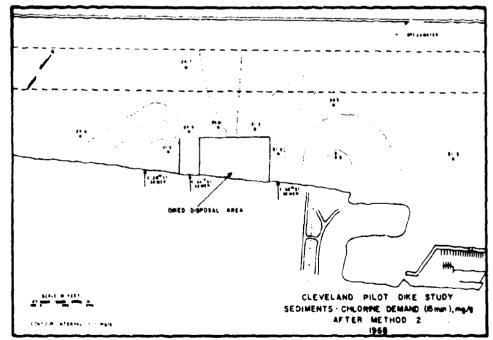


FIGURE 35

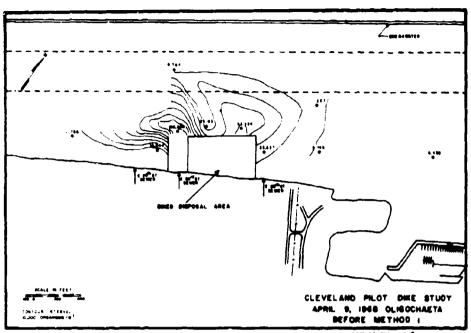


FIGURE 36

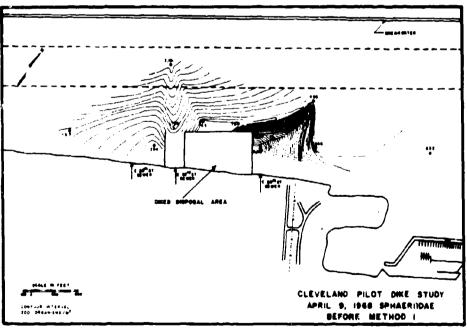
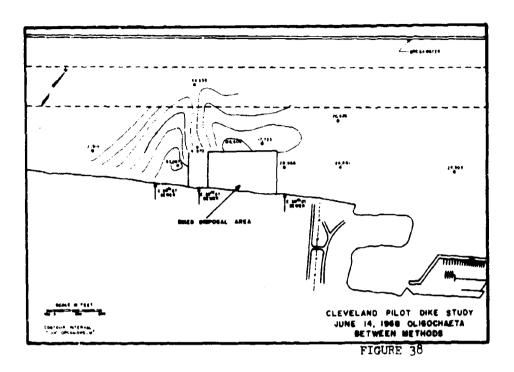
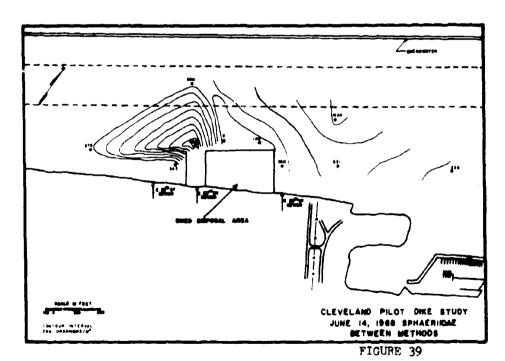




FIGURE 37

()

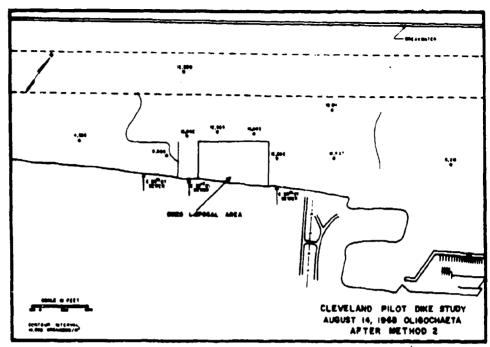


FIGURE 40

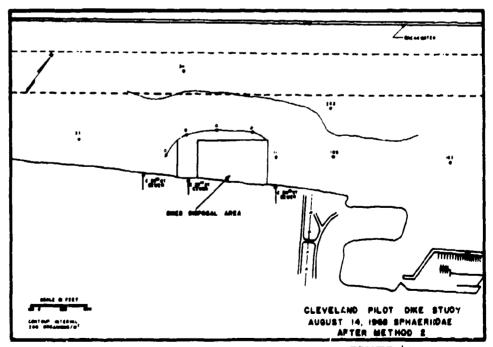


FIGURE 41

_ The many was a fine

population showed a general reduction and remarkable uniformity in areal population distribution.

Studgeworm population pulses occur naturally in winter, spring, and summer, with a reduction in fail. The reduction after completion of disposal may have been a part of a natural cycle, but it may also have been a result of a sediment change.

Fingernall clams (figures 37, 39, and 41) were dramatically reduced in population during the first method of disposal and even further during the second. Patterns of relative abundance were similar in all cases with fewer numbers near the dike. After completion of disposal none were found adjacent to the dike.

Fingernall clams also have certain normal growth cycles. Their numbers are relatively constant through winter, spring, and summer until August when a peak occurs. The population during this study did not fit that pattern, indicating a harmful influence. It is likely that that influence was disposal effluent coupled with effects of sewer discharges. The introduction of a toxic substance from the diked area is suggested. Although Cuyahoga River sediments contain many substances which are more or less toxic, it is not known which or how much are required to eliminate a benthic organism population.

CHANGES IN LAKE ERIE WATER QUALITY DUE TO DIKED DISPOSAL

The quality of Lake Erie water has not been measurably affected by the diked disposal effluent. It is likely that more than 99 percent (Table 6) of nearly all the disposed sediment constituents have been permanently removed from the take ecosystem. Compare this with normal waste

treatment procedures and the removal seems astounding. Although the retention efficiency might decrease with increased disposal pumping, it probably would still be greater than 95 percent. Thus, whatever the effect upon Lake Erie, it would be 5 percent or less of the effect caused by open-lake dumping.

The nutrient phosphorus is now considered the principal controllable factor in the degradation of Lake Erie water quality. Diked disposal removes nearly all of the sediment-contained phosphorus, whereas
with open-lake dumping, under the influences of currents and wave transport and lake bottom chemistry phenomena, the sediment contained phosphorus must be considered as potentially available to the water as a
nutrient. Thus diked disposal, especially in Cleveland Harbor where
most of the waste phosphorus resides in the sediments, is considered
as offering a highly efficient method for removing phosphorus from the
lake system.

Most other constituents, in addition to phosphorus, are efficient—

ly removed from the system by diked disposal as opposed to direct dump—

ing in the lake. Included in this removal are oxygen—demanding substances,

general turbidity, debris, oil, and heavy metals. Kjeldahi nitrogen at

a comparatively low 93 percent removal (Table 6) is still efficiently

retained.

SUMMARY CONCLUSIONS

The conclusions which follow are based only upon the investigation of the Cleveland Pilot dike. The diked area was small and the rate of disposal was low. Had the area been filled with dredged material, it

į)

is likely that some additional conclusions might have been drawn.

The dike was very effective in the containment of dredgings. More than 99 percent of nearly all measured constituents were retained.

General water quality changes due to diked disposal in the Cleveland outer harbor could not be detected except in the vicinity of the dike. Changes due to other causes, such as river and sewer discharges, are infinitely greater.

Pumping the dredgings directly from scows into the diked area caused little or no disturbance to the harbor environment.

Dumping sediments into the slip and pumping them from there into the diked area caused a marked disturbance of water quality in the vicinity of the slip. Tug propellor wash greatly reinforced the disturbance. The effects were measurable to some degree in sediment and water chemistry and benthic biology, and degradation was indicated.

Aerobic conditions and relatively good water quality within the diked area before disposal were transformed rapidly into anaerobic and noxious conditions shortly after disposal began. Water constituents such as dissolved solids rose to high concentrations and leveled off after two or three weeks of disposal.

High porosity of the dike allowed no measurable head to be developed within the diked area and thus the dike probably did not have a great filtering effect, except in the retention of floating debris and oil.

Heads were developed both inside and outside the dike due to normal lake level changes. Flow through the dike exceeded flow from disposal pumping most of the time. These lake level induced flows may have

diluted concentrations within the dike by some unknown amount, presumably small.

A portable treatment plant was effective in removing constituents from the diked water. Coagulation, with filtration and chlorination, was most effective. Filtration only was least effective.

Constituent concentrations in the diked water were less during the second method of disposal, probably attributable to the greater quantities of pumping dilution water used. Total effluent loads were essentially similar for both methods.

53

WORKING DRAFT

to ealtar

RECOMMENDATIONS

to eb!

The pilot dike demonstrated a remarkably high efficiency in containment of dredged materials. It is therefore recommended that Cuyahoga River dredgings be entirely disposed of in a similar manner.

Further recommendations are as follows:

- 1. A diked area should be filled to above take level as quickly as possible to prevent leaching of unwanted constituents from the sediments at the sediment-water interface.
- 2. A disposal area with effluent reaching the take should be filled utilizing, as long as possible, the diked water as dilution to facilitate pumping of materials. This will significantly reduce effluent quantities.
- Sediments should be transferred directly from the transporting unit into the diked area if possible.
- 4. During the later stages of filling a diked area when detention time becomes very low, treatment by at least coagulation may be required to maintain effluent quality.

The above recommendations apply only if dredgings are to be disposed of within a diked area draining to the take which appears at present to be the most feasible.

The Cleveland outer harbor dredgings do not appear to be completely acceptable for dumping into the take. Unless their quality improves it is likely that contained disposal will be recommended in the near future. In the interim it is recommended that they be dumped in the lake at least ten miles from shore in areas (mud) of greatest similarity in

54

present properties. It is further recommended that the practice of dumping dredgings in the dumping grounds adjacent to the lake side of the harbor breakwall be immediately discontinued for all river and harbor sediments. Dumping in this area interferes with several water uses and is esthetically unpleasant. In addition it is changing a natural sand and gravel bottom to relatively noxious mud over an increasingly wider area. These muds tend to increase turbidity in the Cleveland nearshore area, smother desirable bottom fauna and some may even return to the harbor.

()

APPENDIX A6

PILOT STUDY OF ROUGE RIVER DREDGING
AUGUST - DECEMBER 1967

U.S. DEPARTMENT OF THE INTERIOR
Federal Water Pollution Control Administration
Great Lakes Region
Detroit Program Office
U.S. Naval Air Station
Grosse Ile, Michigan

Part Marie Sand Miller

ROUGE RIVER PILOT STUDY

Table of Contents

			Page No.
SCO ORG SUM	ANIZ MARY	ATION	1 1 2 4
ı.	INV	ESTIGATION PROCEDURES & DATA	
	Α.	Dredging Site	
		Characteristics of Undisturbed Bottom Sediments Dredged Sludge (Intake and Overflow) Dredging Operation Transparency and Dissolved Oxygen Measurements Observation	7 13 16 45 49
	в.	Dumping Grounds	
		Effect of Dumping Ground on Detroit River Seepage through Grassy Island Dikes Overflow and Leakage Observation	50 5 0 81 8 5
	c.	Past Records	87
II.	co	nclusions	
	A.	Dredging Operation	94
	в.	Dumping Grounds	98
III	. <i>A</i>	PENDIX	
		Laboratory Procedure Rouge River Water Quality - Ford Motor Company Flow Records - Detroit and Rouge Rivers	100 103 106

demonstration of the

Tables

	The state of the s	
		Page No.
1.	Metropolitan Airport - Precipitation	5
2.	Qualitative Description of Odors	10
3.	B. 23. man	π
4.	HOFFM'N Intake	14
5.		15
6.	Drodging Operation Sampling Results	
	Temperature bH Conductivity Alkalinity Chlorides Phenol Dissolved Oxygen BOD COD Total Phosphate Total Soluble Phosphate Nitrate Nitrate Nitrite Ammonia Organic Nitrogen Total Coliform Fecal Coliform Total Solids Dissolved Solids Suspended Solids Volatile Suspended Solids Iron Oil & Grease Turbidity Secchi Disc Sulfate	18 19 20 21 22 22 23 24 25 26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29

The Marie and the

Triles

	Pn:	je No.
7.	Dumping Ground Compling Residue	
	Temperature pH Conductivity Alkalinity Chlorides Phenols Dissolved Oxygen BOD COD Total Phosphate Total Soluble Phosphate Nitrate Nitrite Ammonia Organic Nitrogen Total Coliform Fecal Coliform Total Solids Dissolved Solids Suspended Solids Total Volatile Solids Iron Oil & Grease Turbidity Sulfate	52 53 4 55 6 7 8 990 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
8.	City of Wyandotte Filter Plant Records	78
9.	Grassy Island Overflow and Leakage	82
10.	Statistics of Water Quality - Dredging and Non-Dredging Periods	88
11.	Statistics of Water Quality - 1963 Non-Dredging Period	93
12.	Water Quality - Grassy Island Pond	99
12	Pouge Piver - Station TOO	105

- Carrier Marie Sangar Salation

Tables

		Page No.
		5
1.	Metropolium Mirport - Precipitation	•
2.	Qualitative Description of Odors	10
3.	Undisturbed Bottom Sediments	n
4.	HOFFMIN Intake	14
5.	HOFFM II Overflow	15
€.	Dredging Operation Sampling Results	
	Temperature pH Conductivity Alkalinity Chlorides Phenol Dissolved Oxygen BOD COD Total Phosphate Total Soluble Phosphate Nitrate Nitrate Nitrite Ammonia Organic Nitrogen Total Coliform Fecal Coliform Total Solids Dissolved Solids Suspended Solids Volatile Suspended Solids Iron Oil & Grease Turbidity Secchi Disc Sulfate	18 19 20 22 24 25 28 29 30 31 32 33 35 36 37 38 39 41 42 43 44

Party Barrell Commencer

Tables

	<u>Par</u>	<u>je No.</u>
7.	Demoing Ground Compling Resulus	
	Temperature	52
	Hc	53
	Conductivity	54
	Alkalinity	55
	Chlorides	55 56
	Phenols	57
	Dissolved Oxygen	58
	BOD	59
	COL	60
	Total Phosphate	61
	Total Soluble Phosphate	62
	Nitrate	63
	Nitrite	64
	Ammonia	65
	Organic Nitrogen	66
	Total Coliform	67
	Fecal Coliform	68
	Total Solids	69
	Dissolved Solids	70
	Suspended Solids	71
	Total Volatile Solids	72
	Volatile Suspended Solids	73
	Iron	74
	Oil & Grease	75
	Turbidity	76 77
_	Sulfate	
8.	City of Wyandotte Filter Plant Records	78
9.	Grassy Island Overflow and Leakage	82
10.	Statistics of Water Quality - Dredging and Non-Dredging Parkods	88
11.	Statistics of Water Quality - 1963 Non-Dredging Period	93
12.	Water Quality - Grassy Island Pond	99
13.	Rouge River - Station T19	105

Figures

	Page	: No.
ı.	Detroit and Rouge River Sampling Ranges and Stations	3
2.	Undisturbed Bottom Sediment Samples	8
3.	Dredging Operation on October 19, 1967 - Typical Sampling Pattern	17
4.	Transparency Measurements along Dredging Path - September 18, 1967	46
5.	Transparency and Discolved Oxygen Measurements - Average Values	47
6.	Measurements at a Point in Dredging Path.	48
7.	Location of Wells, Sample Points and Recorders - Grassy Island	51
8.	Water Level Record	86
9.	Average Levels in Vicinity of Dredging Operation	97
10.	Distribution of Flow - Detroit River	108

Property make the surface Self floor

PURPORU

The Rouge River Pilot Study was conducted to determine the degree and ember's of collution caused by the dredging operations on the Rouge River and the associated dumping of the dredged material on to Grassy Island.

SCOPE

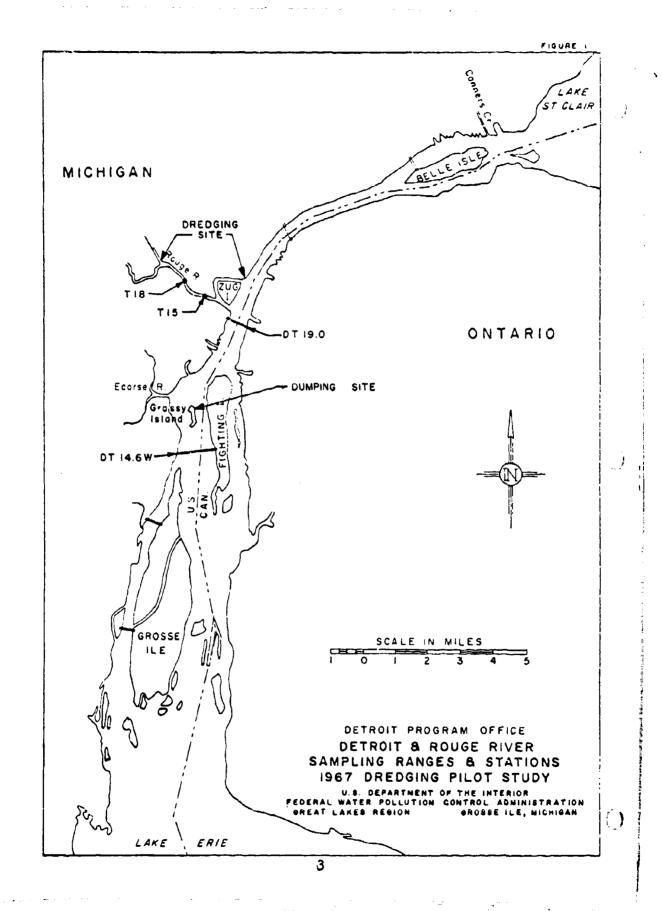
The results of the study include water quality measurements in the Rouge and Debroit Rivers during the period of dredging, chemical characteristics of the undisturbed and dredged bottom sediments, water quality of discharges from the dumping grounds, and the quality of water found in the Grassy Island wells.

The quality of industrial and municipal discharges during the study and variations in flow characteristics of the Detroit and Rouge Rivers during the same period were not determined.

ORGANIZATION

The Rouge River Pilot Study was a cooperative effect of the Detroit
District of the U.S. Army Corps of Engineers and the Detroit Program Office
of the Federal Water Pollution Control Administration.

ACKNOWLEDGEMENTS


The Detroit Program Office received assistance in the preparation of this report from several individuals and organizations including the U.S. Army Corps of Engineers and the City of Wyandotte.

Best Available Copy

SUMMARY

- 1. Both the undisturbed and dredged Rouge River bottom sediments are grossly polluted, containing high concentrations of oil, iron and volatile solids. (pages 7-15, 95 and 96)
- 2. The dredging operation causes significant increases in concentrations of suspended solids, COD, BOD, total phosphate, volatile suspended solids, and iron in the immediate vicinity of the dredge. (pages 94 and 97)
- 3. The most severe pollution caused by the dredging operation was observed during the overflow of the hopper bins. (pages 45-48)
- 4. Decreased transparencies were observed in the dredging area for up to an hour after the passing of the dredge. (pages 45 and 48)
- 5. Decreases in the dissolved oxygen concentration were observed in the dredging area after the dredge had passed. (pages 45 and 48)
- 6. Levels of polluting constituents decreased substantially at a distance one-half mile downstream from the dradging activity. (pages 94 and 97)
- 7. Detention of the homogeneous dredged material in the hopper bins provided for 47% solids removal before overflow. (pages 95 and 96)
- 8. Water quality changes in the Detroit River could not be attributed to either the dredging or disposal operations. (page 94)
- 9. The seepage rate from the Grassy Island dumping grounds is low. (page 98)
- 10. The Grassy Island pond acts as a stabilization and settling pond. (page 98)

_ Part of the substitute of the

the transmission of the

INTRODUCTION AND BACKGROUND

The Rouge River rises northwest of Detroit and flows southeasterly, emptying into the Detroit River at a point 19 miles north of Lake Erie.

The lower 3.5 miles of the river lies in an area dominated by heavy industry. Allied Chemical Corporation, American Agricultural Chemical Company, Darling and Company, Ford Motor Company, American Cement Corporation, and Scott Paper Company have outfalls on the Rouge River which discharge nearly 500 million gallons of cooling and process water each day. Principal waste constituents discharged are: iron, oxygen-demanding substances, bacteria, suspended solids, oil, pickle liquor, phenols, chlorides, cyanides, toxic metals, and ammonia. In additon, the Detroit sewage treatment plant discharges over 500 MGD of primary effluent into the Detroit River near the mouth of the Rouge River. There are also numerous stormwater outfalls which discharge into the Rouge and Detroit Rivers. An overflow can be considered to occur for all rainstorms greater than .2 inches total precipitation per day. The record of daily precipitation reported at Detroit Metropolitan Airport is shown in Table 1.

The main sources of pollution on the Rouge and Detroit Rivers are discussed in detail in the "Proceedings of the Conference in the Matter of Pollution of the Navigable Waters of the Detroit River and Lake Erie and their Tributaries in the State of Michigan, Second Session June 15-16, 1965." Industrial waste outfalls are shown in Volume 1, page 217A, and the average concentrations of the waste constituents are listed in Volume II, pages 374, and 375. The sewage plant outfalls and stormwater overflows are shown in Volume 1, page 226, and the summary of the Domestic Waste Surveys.

The state of the s

Table 1 - Metropolitan Airport Detroit, Michigan Precipitation (Total Water Equivalent, Inches)

FWPCA, DPO (Total Water Equivalent, It

```
0
                                                          1.9
                                                   Nov.
                          Oct.
                                                                   0
      21
                                                          20
                                                   Nov.
                                       0
                          Oct.
       22
             trace
                                                                 .13
                                                          21
                                                   Nov.
                                     .01
                                 7
                          Oct.
                                                                 .11
             C
       23
                                                          22
                                                   Nov.
8 1.02
                          *Oc≒-
              0
                                                                    trace
                                                   Nov.
ing.
                                     .03
                          Cct.
       25
26
                                                                    0
Aug.
                                                   Nov.
                           Ccc. 10
                                     .01
                                                                    trace
                                                   Nov.
                                                          25
                           Oct. 11
                                        trace
       27
            \cdotC^{1}
                                                                    trace
                                                           26
                                                   Nov.
                           Cct. 12
                                        0
       2.
            .12
                                                                    trace
                                                           27
                                      .08
                                                    Nov.
                           Oct. 13
              trace
       29
                                                                  .03
                                                           28
Nov.
                           Oct. 14
                                        trace
       30
            . 3<sup>1</sup>4
                                                                    trace
Now.
                          *Oct. 15
                                    1.03
              Ô
                                                                  .02
 ည်ငှ•
                                                    Nov.
                                       .39
                          *0ct. 16
              C
                                                                    0
 ೮೦ಐ೬∙
                                                    Dec.
                          *Oct. 17
                                    1.70
                                                                  .73
 Sent.
                                                   *Dec.
                           Oct. 18
                                      .01
                                                                  .05
 Sept.
                                                    Dec.
                                        trace
                           Oct. 19
               0
 Sept.
                                        0
                            Oct. 20
               0
 ∷ent.
                            Oct. 21
                                        \circ
 Sept.
                                         0
                            Oct. 22
 Sept.
                            Oct. 23
                                         0
               0
  Sen∪.
         8
                            Oct. 24
                                       .03
               0
          9
  Sepu.
                            Oct. 25
                                         trace
                0
  Sept. 10
                                         trace
                            Oct. 26
  Sept. 11
                            *Oct. 27
                0
  Sept. 12
                                         trace
                             Oct. 28
                0
  Sept. 13
                                         О
                             Oct. 29
                0
  Sept. 14
                                          0
                             Oct. 30
                C
  Sept. 15
                                        .02
                             Oct. 31
                C
   Sept. 16
                                        .85
                            *Nov.
                 0
   Sept. 17
                                        .18
                             No∵.
                 0
   Sept. 18
                                        .49
                            *Nov.
                 trace
   Scpt. 19
                                        .02
                             No.
               .07
   Sept. 20
                                     56
                                        .01.
                              Nov.
  *Sept. 21 1.20
                                           trace
                              Hov.
                 C
   Sept. 22
                                           trace
                              Nov.
                 trace
   Sept. 23
                                           trace
                              Nov.
                 trace
   Sept. 24
                                           0
                              Nov.
                 0
    Sept. 25
                                         .05
                              Nov. 10
                 0
    Sept. 26
                                         .26
                             *Nov. 11
                .22
   *Sept. 27
                                         .02
                              Nov. 12
                .04
    Sept. 28
                                         .04
                              Nov. 13
                .30
   *Sept. 29
                               Nov. 14
                                         .11
                .13
    Sent. 30
                               Nov. 15
                  0
    Oct.
                                           0
                               Nov. 16
                  0
    Oct.
                                          . 34
                              *Nov. 17
                  0
    Oct.
                               Nov. 18
    Oct.
```

 \bigcirc

^{*}Probable stormwater overflows

is shown in Volume II, pages 363 and 364.

Continual accumulation of bottom sediments from effluents discharged to the Rouge River and from natural runoff necessitates annual maintenance dredging of the naviagation channel in the lower river. Each year, a U.S. Corps of Engineers' hopper dredge removes over 100,000 cubic yards of bottom sediments from the Rouge River. The following table indicates the dredging activities which have been undertaken in the Rouge River in the last six years. The bin volume is the amount of sludge actually deposited on Grassy Island from the dredge. The place volume indicates the amount of undisturbed material removed from the Rouge.

Corps of Engineers Maintenance Dredging Rouge River 1962-1967

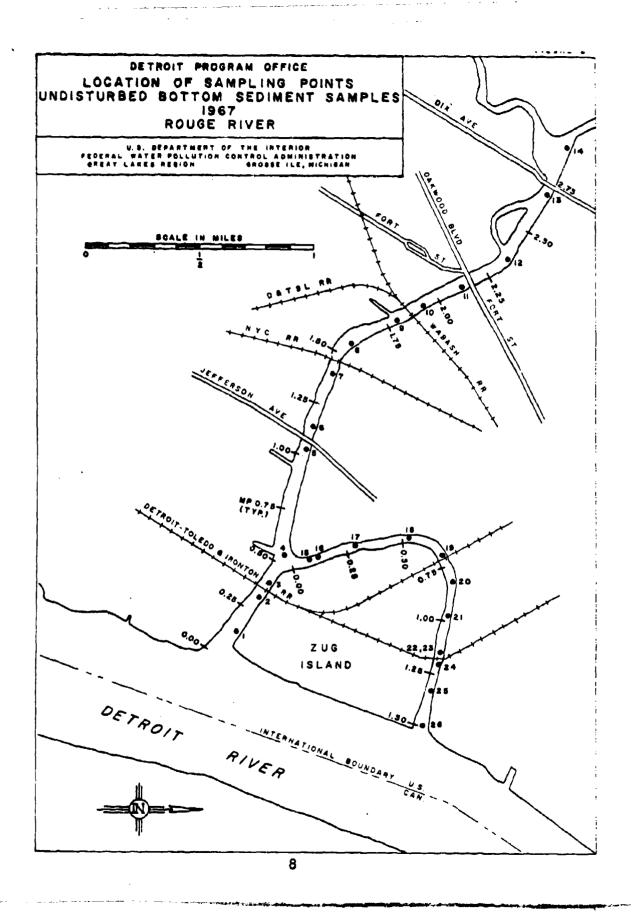
Dredging Period	Bin Volume (cu. yds.)	Place Volume (cu. yds.)
October - December 1962	148,000	95,000
September - December 1963	160,000	102,000
September 18 - December 17, 1964	253,000	171,000
October 1 - December 17, 1965	209,000	125,000
September 26 - December 17, 1966	281,000	119,000
August 25 - November 16, 1967	342,000	222,000

The Grossy Island dumping grounds, covering an area of 80 acres, is located on the American side of the Detroit River approximately four miles south of the mouth of the Rouge River. Grassy Island was formerly a low swempy area at approximately river level. In 1960, the Corps of Engineers completed construction of an earth dike of clay materia' approximately 6 feet high around the perimeter of the island to contain the spoil

from Rouge River dredging. As now constructed there is no everflow weir.

There is however, a valved draingine which is used to remove water

ofter settling.


On a typical dredging and descring run of two to have hour duration. the dredge, with its hoppers landed with Rouge River Lation sediments, univeled south down the Douberto liner to Grassy Island. Upon reaching the island, the dredge was hooked up to the inflow his and its load was pumped on to the Island through one branch of the Y-shaped piping system (shown in Figure 7). After unloading, the areage returned to the Rouge River to repeat the cycle.

I. INVESTIGATION PROCEDURES ALD DATA

A. Dredging Site - Rouge River

Characteristics of Undisturbed Bottom Sediments

In order to determine the characteristics of the undisturbed bottom sediments, sludge samples were collected with the Petersen dredge along the length of the Rouge River prior to the commondement of the dredging operations. Fourteen samples were collected in the main stem of the Rouge from Ford Motor Company turning basin to the mouth of the Short-cut Canal. Twelve additional bottom sediment comples were collected in the Old Channel of the Rouge. The sampling stations are shown in Figure 2 and the results of the analysis of the sludge as shown in Table 3. Explanation of the material and descriptions listed in Table 3 is given on pages 7 and 5.

Description of Bottom Malerial

The descriptions of bottom materials are listed in Table 2.

The sediments were classified as follows:

Done: soft fine decaying organic material.

Sludge: (clay, silt, mud or organic material): non-gritty

material of natural or unnatural origin.

Sand: gritty particles up to 1/25" in diameter

Gravel: 1/25" to 1/4"

Pebbles: 1/4" to 2"

Stones: 2" to 10"

 $\left(\cdot \right)$

Table 1
Qualitative Descriptions of Odors*
FWPCA, DPO, 1967

Code	Nature of Odor	Description (Such as Odors of:)
A	Aromatic (spicy)	comphor, cloves, levender, lemon
Ac	cucumber	Synura
Ŀ	Balsemic (flowery)	geranium, violet, vanilla
BE	geranium	Asterionella
Bn	nesturtium	Aphanizomenon
Bs	sweetish	Coelospheerium
Bv	violet	Mallomonas
С	Chemical	industrial wastes or treatment chemicals
Cc	chlorinous	free chloring
Ch	hydrocarbon	oil refinery wastes
C _m	medicinal	phenol and iodoform
Cs	sulfuretted	hydrogen sulfide
D	Disagreeable	(pronounced, unpleasant)
DÍ	fishy	Uroglenopsis, Dinobryon
Dр	pigpen	Anabaena
Ds	septic	stale sewage
Ξ	Earthy	damp earth
Εp	pesty	peat
G	Grassy	crushed grass
М	Musty	decomposing straw
Mm	moldy	domp cellar
V	Vegatable	root vegetables

^{*}Standard Methods of Examination of Water & Wastewater, 11th Edition, p. 255

Rouge River Pilot Study - 1967 Undisturbed Bottom Sediment Table 3	CORPS. DESIGNATION DATE LAB NO. TEMP. OC GROSS DESCRIPTION OC (Description; odor*)		29-26 7-18 23754 19.0 Black, gray sludge & coal	7-18 29755 19.5	7-18 29757 19.5 Gray sludge; D (decompo	29756 19.5 Gray slud	7-19 29763 21.0	7-19 29764 22.0 Dark-gray	7-19 29765 20.0 Dark gray		7-19 29767 21.0 Dark gray	7-19 29768 22.0	7-26 30751 23.5 Dark gray cludge & coze	7-26 30T52 24.0 Dark	7-19 29769 2h.0 Dark gray sludge, 007e,	29770 24.0 Dark sludge, coze, trace oil & iron				-20 (1-18 - 120.0 (Gray sindice & pulpwood;	(7-18) = (2975) = (-20.0) = (6729 s) udge & pulphood. D. (decomposing 4004)	1 [7-18 29759 27.0 Gray sludge, trace oil; C,					7-18 29748 22.0	24 T_R6 [30750 19.0 _ Dark gray ooze, sand & zebbles, sle	[29(5) 19.0 [Light gray sludge; C., C.	OGray sludge	Gray Studies 18.5 Gray sludge & cone; Ch. D		The state of the s
æ	DATE		7-18	7-18	7-18	7-18	7-19	7-19	7-19	7-19	7-19	7-19	2-2	7-36	7-19	7-19				-20		[7-18 1		7-18				(J ₁		16-25	-	e martiel. De le centre de septembre de la graphe de la graphe de la central de la cen
FWPCA, DPO	E MILE POINT	8	.14	.33	040	.55		1.15	7:40	1.57	1.80	1.93	2.14	2.37	2.71	2.94	- -	Channel.	85	8	12		52	-\j_0\-		93	1.15	1.15	1.30	.1.32	3.48	· · · · · · · · · · · · · · · · · · ·	able 2
	SAMPLE NO.	Main Roat D.R.	1	2	٣.	77	2	9		8	6	10	11	12	13	14		Und Cha	VUTOI	15.	16		-18	77	8	12	22	23	् तुः —	<u>.</u>		· - E	*See Table

เป็นเซาการแล้ว มาให้แ

Bowge Kiver Pilot Study - 1967 Undisturbed Rottom Sediment

10,000 6700 88 5400 8500 200 Wet Basis 000 000° 1 800 Ory Basis W Table 3 (cont SOLIDS **VOL** 19 48 445 22212 F 8 8 7 9 22 23 ヸ TOTAL SOLIDS Wol Basis ପ୍ଧପ୍ତ 神村 없 45 32 25 OIL B. GREASE Ory Basis 10,000 20,000 2 000 10,000 0001 30,000 000,09 2,000 Mg/Kg 50,000 30,000 50,000 000,09 40,000 2000 20,000 000,01 900 43,000 59,000 Wat Basis Wet Basis Wet Basis Wet Basis Wet Basis Wet Basis Wat Basis 50,000 39,000 3600 0089 16,000 14,000 000,01 7800 1300 17,000 55,000 6500 000 11 000,01 11,000 22,000 0076 3000 Mg/Kg IRON AMMONIA ORGANIC NITROGEN MG/KG 888 18888 8 80 ကယ 38 유 প্ৰ 100 ı N-8 HN Mg/Kg 8 9.9 88 38 S 2007 얾 a G & NITRITE NO2-N M9/K9 88 50 90, 5 S 200 g 2 8 • .05 484 828 \$ ヿ TOT. SOL. NITRATE NO3-N Mg/Kg 828 ∞ ∞ V, V 888558 8 88 8 28 g প্র Я PO4 Mg/Kg 20 Q d Mg/Kg 2700 830 980 870 250 1400 1300 138 96 1300 83 TOTAL 5000 1800 3800 2700 1700 P04 Wet Bosis HENOLS 88 왕왕왕 22 001 014 021 021 021 2000 2000 2000 000 1500 8 000 1200 Wat Busis 1,4 Kg 000 Wet Bosis 00 DEM M9/K9 INMED. 800 88 888 প্র 의 8 88 201 क्ष 9 '0 N 48 おおお 옄 # র al a 9 SAMPLE

12

Mary Mary

Dredged Sludge (Intake and Overflow)

In order to determine the characteristics of the dredged sludge, samples were collected from the intake of the hopper dredge. The material, as it flowed with varying consistency into the hopper from an inflow chute, was collected with a metal bucket suspended from a rope. Samples collected after October 12 were composites of the inflow from both side of the dredge.

Samples were also collected from the overflow material. These samples were collected with a metal bucket at the edge of the hopper as the material overflowed into the river. The results of the chemical analysis of both the intake and overflow material are shown in Tables 4 and 5. The conclusions regarding the dredged sludge are discussed on pages 95 and 96.

TABLE 4, HOPPMAN INTAKE

FWPCA, DPO

																					 	 		_			 	 		_
iox	SOLIDS	%	Ory Basis	7.	3	57	15	77	2	17	91	17																		
FIXED	SOLIOS	%	Ory Basis	98	51	85	85	8	8	33	₹ (83																		
TOTAL	SOLIDS	%	Net Basis	9	3	3	33	23	75	%	8	36																		
4 110	SREASE	Mg/Kg	ry Basis	40,000 40 86 14	20,000	40,000	000,04	000,04	50,000	20,000	10,000	000,031																		
-	RON	Mg / Kg	S	000,04	000 9	_	38,000	-	_	-	5,100	000 1 2		1									+			1			-	_
POPENIE	NITROGEN	Mg/Kg b	et Basis W			_	જ્	_	_	+	1	2										1				-				-
AMMONIA		Mg/Kg	_	82	200	200	80	100	200	200	9	01					_													-
ATOTIO		Mg/Kg	Vet Basis M	0.3	0.07	0.07	0.08	0.0	0.05	90.0	20.05	< 0.05		-															1	
⊢		Mg/Kg		જ	2	3	20	8	&	ន	V 8	< 8																		
_	PO. SUL	-	Vet Basis V	~	~	~	2	m	*	71	3																			
	TOTAL T	Ma/Ko	Basis	8	2,600	000	3,600	1,900	001	2,700	550	97																		
	PHENOLS	ug / Ka	<u>۔۔۔</u>	1.100	8	610	880	2,000	016	1,000	86	850																		
	000	Ma/Ko	At Basis W	9	000	2 S	30.00	68,000	50.000	97,300	000	120,000																		
-	IMMED.	No /kg	Wet Bosis Wet Bosis		-	2	+-	0017	-	$\overline{}$			 -			-	-								,	 - 				
		Date	_	8-31	0-7	11-0	0-01	10-5	10-12	61-01	X-01	11-8						1	+	1										

14

TABLE 5 HOFFMAN OVERFLOW

न

_							_						_		_				_		_		,								,			,	
2	SOLIDS	%	Basis Dry Basis		ส		16	15	1	72	와	14	<u></u>	!		!	! !		i i					 	!								-		
CIAED	SOLIDS	%	Dry Basis		79		2	85	ဋ	13	ا ب	8	رن 			,	'	 	 	 							!	!		 	1				
147	/A i	%	Wet Basis Dry		23	22	-22	_19_	19	15	ส	16	- - - - - -		!			:		 		į	!						- i			:		- 7	
4	ننز	Mg/Kg	Ory Basis		70000	0000	00009	20000	40000	70000	2000	0000 0000 0000 0000 0000 0000 0000 0000 0000	200	1	!					<u> </u>	!														
		Ne / Kg	_		31,000	25000	23000	17000	5000	17000	17000	500	13000	:				:	: :		-		: :	:											
0110000	NITROGEN	-	Wet Basis Wer Basis		8	8	ဓ	의	8	3	- 8	<u>۾</u>	70-1			 			-	!					!				 						
	NH3-NN		Wet Basis V		70	8	188	200	700	%	9	ا	7 7	-i			 - 	 		 -		 		-	: 	 			! !	ļ !		! !			
_		Mg/Kg	Wet Basis W		90.0	0.05	0.07	0.07	<u>့</u>	0.05	0.05	0.05	8 .				!		-							-	 -						:		
-	NO - N	+-	ဟ		8	8	8	10	10	10 V	ν ω ν	الا دی الا	ν _∞ ν	-	!	-			-			-					<u> </u>			<u> </u>					
	101. SOL. N PO.	5	<u>></u>		٥	-	2	-	2	-3	ر ر	CV	-	-	-	 -				-		-	+	-	<u> </u>		 					!	1		
	FOTAL T	-	Bosis		2200	1800	2300	198	1600	1500	2200	1480	17.			<u> </u>				 	-				-	 	<u>: ~</u> 			 	;			i i	! ! !
-	PHENOLS	ug/Kg	et Basis W		999	750	001	1400	1500	810	2100	380	84			-						†									-		 		
2	400	Mg/Kg	-5-		53000	0000	63000		000099	61000	25000	30000	3300			-		-		 										-			 		
-	Date Do DER		et Basis W			†	100	ı				30	- 1											-	!						: .	-	-	!	T
	Date				8-31	2-7	9-14	ಶ	10-5	10-12	10-19	10-29	8-11				 							; 	<u>!</u>		<u>.</u>					<u>. </u>	<u>. </u>		-

15

The transfer of the second

Dredging Operation

The study of the dredging operation was conducted to determine the pollutional effect of dredging on the water quality of the Rouge and Detroit Rivers. Water quality changes caused by dredging operations must be distinguished from changes occurring as a result of changes in effluent of the numerous pollution sources.

Station T15 (Jefferson Street bridge) and Station T18 (Fort Street bridge) on the Rouge River and R139 and R142 (on range DT 19.0, 100 and 400 feet from U.S. shore, respectively) on the Detroit River were sampled at mid-depth each week to determine water quality at these fixed points as the dredging progressed downriver. These stations are shown on Figure 3 and the results of the analyses as related to the position of the dredging operation are listed in Table 6.

Water quality determinations of mid-depth samples were also made in the vicinity of the dredging operation. Samples collected in the stirred-up material about 50 feet behind the dredge during hopper over-flow were analyzed to determine the worst condition created by the dredging. The sample collected 1/4 mile upstream reflects the water quality of the river unaffected by dredging. The analysis of the sample collected (1/4 mile and 1/2 mile) downstream shows the extent of the pollution. The results of the analyses are shown in Table 6.

FIGURE 4 DETROIT PROGRAM OFFICE DREDGING OPERATION ON OCT. 19, 1967 TYPICAL SAMPLING PATTERN ROUGE RIVER U 3. DEPARTMENT OF THE INTERIOR FEDERAL WATER POLLUTION CONTROL ADMINISTRATION ORGAN LAKES REGION GROSSE ILE, MICHIGAN SCALE IN MILES OF OREOGING EXTENT MILE DOWNETREAM MILE DOWNSTREAM 1.00 ZUG 1.25 ISLAND DETROIT INTERNATIONAL BOUNDARY RIVER 17

TABLE 6 DREDGING OPERATION SAMPLING RESULTS PARAMETER: Temperature $\binom{O}{C}$

į

9.0 R142	21.0	•	23.0	18.5	20.0	16.0	13.0	12.0	8.5	5.0	15.0 23.0 5.0
DT 19.0 R139	21.0	1	21.5	19.0	20.5	16.0	13.0	13.0	9.5	0.9	15.5 21.5 6.0 9
Rouge R. T15 (MP 1.09)	28.0	1	26.0	20.5	22.0	16.5	14.0	12.0	1	13.0	19.0 28.0 12.0 8
Rouge R. T18 (MP 2.19)	27.5	ı	27.0	21.5	22.5	17.0	14.5	11.0	1	12.0	19.0 27.5 11.0
1/2 Mile Downstream	:	27.0	27.0	20.5	22.0	17.0	14.5	11.5	ı	8.0	18.5 27.0 8.0 8
1/4 Mile Downstream	,	27.0	27.5	20.5	22.5	17.0	15.0	11.5	9.0	10.0	18.0 27.5 9.0 9
Behind Dredge	ŧ	26.5	•	20.5	23.0	17.0	14.5	12.5	8.5	12.5	17.0 26.5 8.5 8
1/4 Mile Upstream	•	ı	27.0	1	22.5	•	14.5	12.5	0.6	12.5	16.5 27.0 9.0 6
Dredge Loc. (mile points)	None	2.67 to 2.94	2.55 to 2.94	9-14 2.40 to 3.00	9-21 1.93 to 2.63	1.87 to 2.69	10-12 1.50 to 2.17	1.45 to 2.17	Old Channel	0.87 to 1.46	Average Maximum Minimum No. Samples
Date 1967	8-24	8-31	1-6	9-14	9-21	10-5	10-12	61-01	10-29	11-8	

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: pH (standard units)

				FAKAME LEK :	pn (standard units)	dilles)			
Date 1967	Dredge Loc. (wile points)	1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)	Rouge R. 715 (MP 1.09)	DT 8139	DT 19.0 R142
8-24	None	•	ı	•	ı	6.7	6.9	7.2	7.2
8-31	2.67 to 2.94	•	9.9	•	7.1	1	ı	i	1
9-7	2.55 to 2.94	7.3	•	7.4	7.3	7.3	7.4	8.0	7.8
9-14	2.40 to 3.00	1	7.5	7.5	1.6	7.6	7.8	7.5	8.0
9-21	1.93 to 2.63	7.3	7.1	7.4	7.7	7.2	7.4	7.5	7.5
10-5	1.87 to 2.69	•	7.6	7.5	7.6	7.6	7.5	7.5	8.0
10-12	10-12 1.50 to 2.17	7.4	7.6	7.5	7.5	7.6	7.6	7.8	8.0
10-19	10-19 1.45 to 2.17	7.6	7.5	7.5	7.5	7.5	7.5	7.7	8.0
10-29	Old Channel	8.2	8.1	7.8	•	1	1	7.8	8.0
11-8	0.87 to 1.46	8.0	7.8	7.9	7.9	8.1	8.2	8.1	8.2
	Average Maximum	7.6 8.2	7.5	7.6	7.5	7.5	7.5	7.7	7.9
	Minimum No. Samples	7.3	6.6 8	7.4	7.1	6.7	6.9 8	7.2	7.5

(`)

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Conductivity (umhos/cm)

			Σį	FARAMETER: CO	conductively (minos) cm	(may / comman)			
Date 1967	Dredge Loc. (mile points)	1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)	Rouge R. T15 (MP 1.09)	DT R139	DT 19.0 R142
8-24	None	•	1	•	1	300	320	220	Oħ2
8-31	2.67 to 2.94	1	410	1	054	•	1	1	•
6-1	2.55 to 2.94	001 1	ı	380	390	390	410	300	300
9-14	2.40 to 3.00	•	350	310	310	310	430	300	042
9-21	1.93 to 2.63	3 360	069	370	094	014	001	380	240
% 10−5	1.87 to 2.69	- 6	300	310	320	300	320	270	1 00
10-12	1.50 to 2.17	7 350	370	350	0Z1	350	014	530	230
10-19	1.45 to 2.17	7 520	510	520	510	510	510	580	55 0
10-29	Old Channel	210	230	280	ı	1	•	530	360
11-8	0.87 to 1.46	6 430	7 9 7	240	094	ंग्र	01/1	570	540
	Average Maximum Minimum No. Samples	380 520 210 6	690 830 830	380 880 890 890	410 510 320 8	380 510 300 8	400 510 320 8	230 280 6 9	25.0 22.0 22.0 9

And the State of the

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Alkalinity (mg/l as CaCO₃)

च

()

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Chlorides (mg/l)

DT 19.0 R142	14	•	25	11	12	6	12	10	22	11	14 25 9 9
DT R139	25	1	25	27	35	27	30	26	30	17	27 35 17 9
Rouge R. T15 (MP 1.09)	31	1	67	67	97	28	45	65	ı	41	44 65 28 8
Rouge R. T18 (MP 2.19)	54	ı	40	20	47	54	37	62	1	07	37 62 20 8
1/2 Mile Downstream	ı	27	70	21	47	. 27	48	79	•	69	43 69 21 8
1/4 Mile Downstream	•	ı	35	20	07	27	77	65	23	77	41 77 20 8
Behind Dredge	1	30	ı	27	130	23	38	63	10	41	45 130 10 8
1/4 Mile Upstream	•	•	36	1	39	ı	35	99	œ	70	37 8 8 6 6
Dredge Loc. (mile points)	None	2.67 to 2.94	2.55 to 2.94	9-14 2.40 to 3.00	1.93 to 2.63	1.87 to 2.69	1.50 to 2.17	1.45 to 2.17	01d Channel	0.87 to 1.46	Average Maximum Minimum No. Samples
Date 1967	8-24	8-31	1-6	9-14	9-21	10-5	10-12	10-19	10-29	8-11	
						22					

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Phenol (µg/1)

Date Dredge Loc. 1967 (mile points)		1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)	Rouge R. T15 (MP 1.09)	DT R139	DT 19.0 R142
8-24 None		•	,	•	1	96	11	15	10
8-31 2.67 to 2.94	2.94	•	10	41	51	1	1	ı	•
9-7 2.55 to 2.94	2.94	6	•	12	12	12	80	4	80
9-14 2.40 to 3.00	3.00	•	٣	4	ĸ	7	2	4	3
9-21 1.93 to 2.63	2.63	15	16	13	11	81	6	19	19
10-5 1.87 to 2.69	2.69	1	1.5	15	13	17	23	16	16
10-12 1.50 to 2.17	2.17	245	110	80	14	220	21	24	22
10-19 1.45 to 2.17	2.17	15	71	16	13	61	91	18	17
10-29 Old Channel	nnel	80	12	17	•	ı	1	16	17
11-8 0.87 to 1.46	1.46	22	13	24	19	27	6	13	ဢ
Average Maximum Minimum No. Samples	ples	52 245 8 6	24 110 3 8	25 80 4 9	17 51 5 8	51 220 1 8	12 23 2 8	14 24 4 9	13 22 3 9
	1.46	22 52 245 8 6	13 24 110 3 8	24 25 80 4 9	19 17 51 8	27 51 220 1 8	23 23 8		13 14 24 4

()

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Dissolved Oxygen (mg/l)

1967 Control of the points 1/4 Mile Entire 1/2 Mile 1/2 Mile 1/2 Mile 1/3 Mile 1/3 Mile 1/4 Mile 1/4 Mile 1/2 Mile 1/5 Mile 1/5 Mile 1/5 Mile 1/4 Mile 1/					Ą	FAKAMETEK: DI	DISSOIVED ON/Ben (#6/ -/	(+ /9m) 113				
8-24 None		Date 1967	Dredge Loc. (mile points)	1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)			19.0 R142	
8-31 2.67 t to 2.94 - 1.5 - 1.9 -		8-24	1	,	ı	•	•	1.8	2.9	7.4	7.9	
9-1 2.55 to 2.94 1.3 - 2.9 2.3 2.2 8.1 9-14 2.40 to 3.00 - 1.9 3.9 3.0 3.0 3.1 1.7 7.9 9-15 1.93 to 2.63 4.7 0.1 0.2 .3 0.2 7.2 7.9 10-5 1.87 to 2.69 - 5.4 2.8 2.7 2.4 5.2 1.8 9.9 10-12 1.50 to 2.17 4.4 2.8 3.6 0.1 0.1 2.2 0.1 9.1 10-19 1.45 to 2.17 4.4 2.8 3.6 3.0 4.3 2.8 9.6 10-29 01d Channel 10.6 10.1 8.1 1 10.4 11-8 0.87 to 1.46 7.0 6.8 6.5 9.2 7.7 6.4 11.2 4.4 11.2 4.4 4.3 8.1 9.2 7.7 6.4 11.2 4.4 11.2 8.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 7.7 6.4 11.2 11.2 11.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		8-31		ı	1.5	•	1.9	1	•	•	•	
9-14 2.40 to 3.00 - 1.9 3.9 3.0 3.1 1.7 7.9 9-21 1.93 to 2.63 4.7 0.1 0.2 .3 0.2 .2 7.7 10-5 1.87 to 2.69 - 5.4 2.7 2.4 5.2 1.8 9.9 10-12 1.50 to 2.17 4.4 2.8 3.6 3.0 4.3 2.8 9.6 10-19 1.45 to 2.17 4.4 2.8 3.6 3.0 4.3 2.8 9.6 11-8 0.87 to 1.46 7.0 6.8 6.5 9.2 7.7 6.4 11.2 Haxtmun 10.6 10.1 8.1 9.2 7.7 6.4 11.2 Haxtmun 10.6 10.1 8.1 9.2 7.7 6.4 11.2 Minimum 10.6 8 8 8 8 8 8 8 8 8 8 8		4-1		1.3	•	2.9	2.3	2.3	2.2	8.1	8.0	
9-21 1.93 to 2.63 4.7 0.1 0.2 .3 0.2 .2 7.7 10-5 1.87 to 2.69 - 5.4 2.7 2.4 5.2 1.8 9.9 10-12 1.50 to 2.17 2.0 0.6 0.1 0.1 2.2 0.1 9.1 10-19 1.45 to 2.17 4.4 2.8 3.6 3.0 4.3 2.8 9.6 10-29 01d Channel 10.6 10.1 8.1 10.4 11-8 0.87 to 16 7.0 6.8 6.5 9.2 7.7 6.4 11.2 Haximum 10.6 10.1 8.1 0.1 0.1 0.1 0.1 0.2 0.1 7.7 6.4 11.2 Haximum 10.6 8 8 8 8 8 8 8 8 8 8		9-14		ı	1.9	3.9	3.0	3.1	1.7	7.9	8.6	
10-5 1.87 to 2.69 - 5.4 2.7 2.4 5.2 1.8 9.9 10-12 1.50 to 2.17 2.0 0.6 0.1 0.1 2.2 0.1 9.1 10-19 1.45 to 2.17 4.4 2.8 3.6 3.0 4.3 2.8 9.6 10-29 01d Channel 10.6 10.1 8.1 10.4 11-8 0.87 to 1.46 7.0 6.8 6.5 9.2 7.7 6.4 11.2 Haximum 10.6 10.1 8.1 9.2 7.7 6.4 11.2 Hinimum 10.8 8.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 7.4 9.9		9-21			0.1	0.2	£.	0.2	.2	7.7	8.2	
10-12 1.50 to 2.17 2.0 0.6 0.1 0.1 2.2 0.1 9.1 10-19 1.45 to 2.17 4.4 2.8 3.6 3.0 4.3 2.8 9.6 10-29 01d Channel 10.6 10.1 8.1 10.4 11-8 0.87 to 1.∴6 7.0 6.8 6.5 9.2 7.7 6.4 11.2 Average 5.1 3.7 3.5 2.8 3.4 2.3 9.0 Minimum 1.3 0.1 0.1 0.1 0.1 0.1 0.2 0.1 7.4 No. Samples 6 8 8 8 8 8 8 8 8	24	10-5		•	5.4	2.7	2.4	5.2	1.8	6.9	9.7	
1.45 to 2.17 4.4 2.8 3.6 3.0 4.3 2.8 9.6 9.6	4	10-12			9.0	0.1	0.1	2.2	0.1	9.1	9.6	
Old Channel 10.6 10.1 8.1 - - - 10.4 0.87 to 1.46 7.0 6.8 6.5 9.2 7.7 6.4 11.2 Average Haximum In.3 5.1 3.7 3.5 2.8 3.4 2.3 9.0 Minimum In.3 0.1 8.1 9.2 7.7 6.4 11.2 Minimum In.3 0.1 0.1 0.1 0.1 7.4 No. Samples 6 8 8 8 8 9		10-19	1.45 to 2.17	4.4	2.8	3.6	3.0	4.3	2.8	9.6	10.0	
0.87 to 1.46 7.0 6.8 6.5 9.2 7.7 6.4 11.2 Average Haximum Haximum Minimum No. Samples 5.1 3.7 3.5 2.8 3.4 2.3 9.0 Minimum No. Samples 1.3 0.1 0.1 0.1 0.1 7.4 No. Samples 6 8 8 8 8 9		10-29	01d Channel		10.1	8.1	ı	1	ı	10.4	10.5	
5.1 3.7 3.5 2.8 3.4 2.3 9.0 10.6 10.1 8.1 9.2 7.7 6.4 11.2 1.3 0.1 0.1 0.1 0.2 0.1 7.4 ples 6 8 8 8 9		11-8	0.87 to 1.46	7.0	8.9	6.5	9.2	7.7	7.9	11.2	11.5	
			Average Maximum Minimum No. Samples	5.1 10.6 1.3 6	3.7 10.1 0.1 8	3.5 8.1 8	2.8 9.2 0.1	3.4 7.7 0.2 8	2.3 6.4 0.1 8	9.0 11.2 7.4 9	9.3 11.5 7.9	

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARANETER: BOD (mg/l)

Dre (mi.1	Dredge Loc. (mile points)	1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)	Rouge R. T15 (MP 1.09)	DT 19.0	9.0 R142
8-24 None		1	•	ì	•	ю	٣	4	4
,) t(8-31 2.67 to 2.94	1	4	•	9	•	ŧ	t	ì
5.	9-7 2.55 to 2.94	2	ŧ	2	2	2	2	5	4
Q.	9-14 2.40 το 3.00	,	16	4	7	٣	4	\$	4
5	9-21 1.93 to 2.63	2	7	\$	4	4	ش	3	o r
<u>. </u>	1.87 to 2.69	•	IJ	5	4	4	4	1	7
O	10-12 1.50 to 2.17	5	5	9	9	7	9	5	7
rŬ	10-19 1.45 to 2.17	3	11	4	٧.	4	4	2	e
Ö	Old Channel	3	9	14	1	•	•	4	4
~	0.87 to 1.46	7	6	13	16	2	4	'	4
Average Maximum Minimum No. Sam	Average Maximum Minimum No. Samples	m v 21 9	6 7 4 8	7 14 2 8	5 16 2 8	8 7 7 8	4978	5 7 7 8	4 6 M D

()

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: COD (mg/l)

4.2	27	,	,	13	36	80	16	7	14	90	15 36 41 8
DT 19.0 R142	2			1	E.		1	~	I		~ € ∀
R139	21	1	l	18	31	24	16	7	22	25	20 31 4 8
Rouge R. T15 (MP 1.09)	17	•	•	18	23	24	28	07	•	33	26 40 17
Rouge R. T18 (MP 2.19)	10	•	•	18	31	22	24	36	ı	19	23 36 10 7
1/2 Mile Downstream	1	11	•	6	23	. 20	38	77	ı	99	29 56 9
1/4 Mile Downstream	•	ı	1	15	27	32	75	52	61	28	41 61 15
Behind Dredge	1	24	•	011	28	<i>1</i> 9	140	28	35	130	74 140 24 8
1/4 Mile Upstream	•	1	•	1	19	•	20	34	9	19	20 34 6
Dredge Loc. (mile points)	8-24 None	2.67 to 2.94	2.55 to 2.94	2.40 to 3.00	9-21 1.93 to 2.63	1.87 to 2.69	10-12 1.50 to 2.17	1.45 to 2.17	Old Channel	0.87 to 1.46	Average Maximum Minimum No. Samples
Date 1967	8-24	8-31	1-6	9-14	9-21	10-5		10-19	10-29	11-8	
						20	5				

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Total Phosphate (as PO,) (mg/l)

 $(\dot{})$

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Total Soluble Phosphate (as PO₄)

	1										٠	
19.0 R142	.20	•	.41	.23	.27	. 50	.36	.27	.30	.27	.31 .50 .20	
DT .	.12	t	.32	.17	.15	.30	.12	.27	.43	.26	.24 .43 .12	
Rouge R. T15	.22	•	.15	2.3	.15	.28	.24	.29	•	.30	.49 2.3 .15	
Rouge R. T18	(MP 2.19)	•	.07	67.	90*	.22	. 18	.31	•	.39	.25 .49 .06	
1/2 Mile Downstream		ı	.07	1.6	.19	.21	.22	.53	ı	.47	.47 1.6 .07	
1/4 Mile Downstream		t	.11	.50	.15	.14	.17	¥.	.33	.19	.24 .50 .11	
Behind Dredge	,	90.	•	.08	.13	.29	.23	.31	.15	90.	.16 .31 .06	
1/4 Mile Upstream		,	90.	1	.17	•	.17	.39	60.	90.	.16 .39 .06	
Predge Loc. (mile points)	None	2.67 to 2.94	2.55 to 2.94	2.40 to 3.00	1.93 to 2.63	1.87 to 2.69	1.50 to 2.17	10-19 1.45 to 2.17	Old Channel	0.87 to 1.46	Average Maximum Minimum No. Samples	
Date 1967	9-24 None	8-31	6-7	9-14	5-21	S-01	10-12	10-19	10-29	11-8		
						21	5					

Action Control

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Nitrate-N (mg/l)

) R142	۴.	•	٠.	4.	4.	٤.	.3	7.	.1	9.	 6. 9.
DT 19.0 R139	۴.	1 .	.1	7.	9.	٤,	£.	4.	.2	9.	4. 6. 1. 9
Rouge R. T15 (MP 1.09)	.3	ı	<.1	٤.	.1	4.	5.	2.5	ı	1.8	2.5 7.1 8
Rouge R. T18 (MP 2.19)	۳.	ı	.1	4.	.2	9.	5.	2.7	1	1.7	2.7 2.1 .1
1/2 Mile Downstream	1	e.	۲.	4.	۳.	4.	e.	2.2	1	.7	2.2 2.1 .1
1/4 Mile Downstream	ı	•	<.1	4.	.2	.5	9.	2.4	.2	1.2	2.4 2.4 <.1
Behind Dredge	•	٥.	•	1.9	ŗ.	φ .	6.	2.2	£.	1.3	1.0 2.2 .3
1/4 Mile Upstream	•	•	<:1	•	ε.	•	4.	2.5	.2	1.4	.8 2.5 6.1 6
Dredge Loc. (mile points)	None	8-31 2.67 to 2.94	2.55 to 2.94	2.40 to 3.00	9-21 1.93 to 2.63	1.87 to 2.69	10-12 1.50 to 2.17	1.45 to 2.17	01d Channel	0.87 to 1.46	Average Kaximum Minimum No. Samples
Date 1967	8-24 None	8-31	9-1	9-14	9-21	10-5	10-12	10-19	10-29	11-8	

 \ddot{i}

Ō

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Nitrite-N (mg/l)

!

Dredge Loc.	Dredge Loc. (mile points) None	1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)	Rouge R. T15 (MP 1.09)	R139 C.01	DT 19.0 R142
2.67 to 2.94		•	.05	•	90.	1	•	•	,
2.55 to 2.94		.02	•	.02	.02	.02	.02	.01	.01
2.40 to 3.00	_	•	.02	.01	.01	.01	10.	.01	.01
1.93 to 2.63		.02	70.	60.	70.	.03	.05	.01	.02
1.87 to 2.69	_	ı	.01	.02	.02	.02	.02	.01	.01
1.50 to 2.17	~	.04	70.	60.	.10	.04	.11	.02	.01
10-19 1.45 to 2.17		.05	70.	.05	.05	.05	.05	.02	.00
Old Channel		.01	.01	.01	•	•	í	.02	.02
0.87 to 1.46		.02	.02	.02	.01	8.	.03	.01	10.
Average Maximum Minimum No. Samples		.03 .05 .01	.03 .05 .01	.0.9 90.09 8	.0. 01. 8	.03 .00 .01	.04 .11. .03	.02 .02 . 04	.01 .02 .02 .01
1			1						

And the second second

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Aumonia-N (mg/l)

	0 R142		74.	1	.30	.41	. 72	.32	.45	.18	.45	.37	•	.72
	DT 19.0 R139		. 12	1	.43	90.	.32	94.	.34	04.	.36	. 54		
	Rouge R. T15	722.7	1.50	1	1.10	1.30	1,30	τι.	2.00	1:	•	1 00	7.00	1.20 2.00 .77
è	Rouge R. T18	(Mr 2:17)	1.90	•	1.20	1.10	1.20	79.	1.40	.80	•	Š	. 9	1,20 1,90 .64
Villa de la composition della	1/2 Mile Downstream		•	•	•	1,20	1.80	78.	1.60	.65	,	;	.55	1.10 1.80 55.
PAKAME LEN:	1/4 Mile Downstream		•	•	1.30	1.20	1.50	.85	2.40	91.	~	01.	76.	1.10 2.40 .10 8
	Behind Dredge		•	•	1	76.	1.70	. 56	1.70	.51		95.	1.10	.98 1.70 .36
	1/4 Mile Upstream		1	ı	.83	•	.58	1	1 60	69	3	.12	.83	.78 1.60 .12
	Dredge Loc. (mile points)		None	8-31 2.67 to 2.94	2.55 to 2.94		1 93 to 2.63			-	10-19 1.43 to 2.17	Old Channel	0.87 to 1.46	Average Maximum Minimum No. Samples
	Date 1967	- [8-24	8-31	6.7	71.0	17 6	17-6	C-01	71-01	10-19	10-29	11-8	

()

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMÉTER: Organic-N (mg/l)

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Total Coliform (NF/100 ml)

Date 1967	Dredge Loc. (mile points)	1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. Rouge R. T18 T15 (MP 2.19) (MP 1.09)	Rouge R. T15 (MP 1.09)	DT 19.0 R139 R1	9.0 R142
8-24	8-24 None	•	1	1	1	21,000	30,000	30,000	20,000
8-31	2.67 to 2.94	1	61,000	58,000	33,000	·	1	1	•
9-7	2.55 to 2.94	1,000	ı	3,800	2,900	2,900	6,700	4,500	200
9-14	2.40 to 3.00	•	1,800	1,200	8,000	2,200	45,000	20,000	510,000
9-21	1.93 to 2.63	006	3,800	8,300	14,000	1,900	17,000	220,000	140,000
10-5	1.87 to 2.69	•	4,000	7,400	33,000	3,400	120,000	26,000	270
10-12	1.50 to 2.17	>20,000	.20,000 140,000	73,000	360,000	>19,000	91,000	7,500	700
10-19	1.45 to 2.17	540,000 500,000	500,000	470,600	420,000	510,000	420,000	39,000	3,000
10-29	Old Channel	80,000	80,000 110,000	110,000	1	1	•	57,000	3,400
11-8	0.87 to 1.46	390,000 100,000	100,000	830,000	360,000	34,000	86,000	77,000	7,400
	Median Maximum Minimum No. Samples	50,000 81,000 540,000 500,000 900 1,800 6 8	81,000 500,000 1,800 8	58,000 830,000 1,200	33,000 420,000 2,900 8	11,200 510,000 1,900 8	64,000 420,000 6,700 8	39,000 220,000 4,500 9	3,400 510,000 270 9

ŧ)

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Fecal Coliform (MF/100 ml)

DT 19.0 R142	077	1	< 100	26,000	710	10	< 100	170	1,900	80	170 56,000 10 9
DT R139	1,100	ı	100	4,100	21,000	530	007	2,400	3,400	9,600	2,400 21,000 100 9
Rouge R. T15 (MP 1.09)	2,600	•	006	12,000	4,700	7,700	6,300	32,000		3,300	5,500 32,000 900 8
Rouge R. Rouge R. T18 T15 (MP 2.19) (MP 1.09)	930	ı	007	280	50	340	2,800	37,000	1	1,800	670 37,000 50 8
1/2 Mile Downstream	•	1,300	700	920	1,800	1,600	14,000	25,000	•	25,000	1,700 25,000 400 8
1/4 Mile Downstream	•	2,200	200	100	006	750	5,200	17,000	8,600	26,000	2,200 56,000 100 9
Behind Dredge	•	3,600	•	70	480	320	4,400	39,000	6,900	4,200	3,900 39,000 70 8
1/4 Mile Upstream	•	1	<100	1	110	ı	3,000	22,000	5,000	1,600	2,300 22,000 <100 6
Dredge Loc. (mile points)	None	2.67 to 2.94	2.55 to 2.94	9-14 2.40 to 3.00	9-21 1.93 to 2.63	1.87 to 2.69	10-12 1.50 to 2.17	1.45 to 2.17	01d Channel	0.87 to 1.46	Median Maximum Minimum No. Samples
Date 1967	8-24	8-31	9-1	9-14	9-21	10-5	10-12	10-19	10-29	11-8	

Them made in the services

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Total Solids (mg/l)

*

6	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 // 14:10	0.1.7.0	1 // W:12	21.70 W:10	0 0000	g oonog	Ę	0 01
1967	Uredge Loc. (mile points)	1/4 mile Upstream	Dredge	1/4 Mile Downstream	1/2 mile Downstream	T18 (MP 2.19)	nouge n. T15 (MP 1.09)	R139	17.0 R142
8-24	4 None	•	•	1		230	250	220	170
8-3	8-31 2.67 to 2.94	ı	330	1	290	1	1	1	t
7-6	2.55 to 2.94	280	•	260	270	270	280	230	200
6 - 13	9-14 2.40 to 3.00	1	989	270	24C	240	300	230	180
9-5	9-21 1.93 to 2.63	240	630	320	300	320	290	240	180
10-5	1.87 to 2.69	ſ	400	290	210	270	260	220	160
10-1;	10-12 1.50 to 2.17	250	450	340	330	260	330	220	150
10-1	10-19 1.45 to 2.17	420	430	760	450	017	450	200	160
10-2	10-29 Old Channel	170	390	310	ı	ı	ı	250	200
11-8	0.87 to 1.46	290	720	. 004	380	300	370	•	1
	Average	280	200	330	310	290	320	230	180
	Maximum Minimum	420 170	720 330	460 260	450 210	410 230	450 250	250 200	200 150
	No. Samples	9	∞	∞	80	∞	æ	σο	∞

()

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Dissolved Solids (mg/l)

•	Date 1967	Dredge Loc. (mile points)	1/4 Mile Upst.eam	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)	Rouge R. T15 (MP 1.09)	DT R139	DT 19.0 R142	٠ .
	8-24	8-24 None	•	•	•	1	210	230	180	140	
	8-31	2.67 to 2.94	•	270	•	260	•	1		•	
	6-7	2.55 to 2.94	260	4	240	260	260	280	200	190	
	9-14	2.40 to 3.00	1	330	240	210	210	260	220	180	
	9-21	9-21 1.93 to 2.63	240	470	270	280	260	270	230	160	
36	10-5	1.87 to 2.69	1	190	210	170	200	230	190	140	
;	10-12	10-12 1.50 to 2.17	210	240	240	270	230	260	200	140	
	10-19	1.45 to 2.17	350	160	350	320	320	730	180	140	
	10-29	Old Channel	150	160	210	•	•	ł	220	170	
	11-8	0.87 to 1.46	280	720	340	340	280	300	1	•	
		Average	250	320	260	260	250	280	200	160	
		Maxiem Market	350	720	350	340	320	430	230	190	
		Minimum	150	160	210	170	200	230	180	140	
		No. Samples	9	∞	80	ၹ	∞	80	80	\$	

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Suspended Solids (mg/l)

Ē.

9.0 R142	31	•	12	7	21	17	12	21	34	11	18 34 7
DT 19.0	42	ŧ	26	9	12	21	20	54	34	10	22 42 6
Rouge R. T15 (MP 1.09)	15	•	2	34	24	30	65	14	1	72	32 72 2 8
Rouge R. Rouge R. T18 T15 (MP 2.19) (MP 1.09)	21	1	10	34	95	78	31	06	1	21	43 90 10 8
1/2 Mile Downstream	1	28	10	27	17	43	09	120	ı	38	43 120 10 8
1/4 Mile Downstream	1	1	17	29	47	81	95	120	93	09	68 120 17 8
Behind Dredge	1	62	•	350	160	210	210	270	230	450	240 450 62 8
1/4 Mile Upstream	•	,	18	•	80	•	35	29	23	13	27 67 8 6
Dredge Loc. (mile points)	None	2.67 to 2.94	2.55 to 2.94	9-14 2.40 to 3.00	1.93 to 2.63	1.87 to 2.69	10-12 1.50 to 2.17	10-19 1.45 to 2.17	Old Channel	0.87 to 1.46	Average Maximum Minimum No. Samoles
Date 1967	8-24	8-31	2-6	9-14	9-21	10-5		10-19	10-29	11-8	

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Total Volatile Solids (mg/l)

42	52	1	11	19	78	09	64	•	99	,	62	67	7
DT 19.0 R142													
D1 R139	71	•	11	110	120	06	83	75	96	•	90	11	\$
Rouge R. T15 (MP 1.09)	88	,	79	81	110	73	92	100	•	170	97	\$	&
Rouge R. T18 (MP 2.19)	\$	1	78	09	110	98	88	78	t	100	98	3	œ
1/2 Mile Downstream	1	1	•	86	110	87	100	110	•	160	110	86	9
1/4 Mile Downstream	ı	85	71	120	120	14	91	120	110	290	110	77	6
Behind Dredge	,	86	•	160	230	100	110	87	92	350	150	87	∞
1/4 Mile Upstream		1	84	,	89	•	72	86	22	130	86	52	9
Dredge Loc. (mile points)	8-24 None	2.67 to 2.94	2.55 to 2.94	2.40 to 3.00	9-21 1.93 to 2.63	1.87 to 2.69	1.50 to 2.17	10-19 1.45 to 2.17	01d Channel	0.87 to 1.46	Average	Minimum	No. Samples
Date 1967	8-24	8-31	4-7	9-14	9-21	10-5	10-12	10-19	10-29	11-8			
						31	8						

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Volatile Suspended Solids (mg/l)

.0 R142	9	•	2	2	12	5	2	ευ	1	-	4 12 1 9
DT 19.0 R139	5	1	4	1	7	۲~	\$	1	1	5	4 7 1 9
Rouge R. T15 (MP 1.09)	7	ŧ	1	9	6	5	80	1.2	1	13	7 13 1 8
Rouge R. T18 (MP 2.19)	4	•	ю	7	11	11	,-4	19	ı	2	7 19 1 8
1/2 Mile Downstream	•	10	3	80	7	10	9	14	1	11	2 4 E 8
1/4 Mile Downstream	ı	10	2	7	10	13	10	24	13	14	111 24 9
Behind Dredge	1	13	1	52	27	34	27	17	28	82	38 82 13 8
1/4 Mile Upstream	1	1	œ	ŧ	4	t	4	10	2	8	10 2 6
Dredge Loc. (mile points)	None	2.67 to 2.94	2.55 to 2.94	2.40 to 3.00	1.93 to 2.63	1.87 to 2.69	1.50 to 2.17	10-19 1.45 to 2.17	Old Channel	0.87 to 1.46	Average Maximum Minimum No. Samples
Date 1967	8-24	8-31	4-6	9-17	9-21	10-5	10-12	10-19	10-29	11-8	

Personal State of the

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: lton (mg/l)

(

<u></u>

						•				
•	Date 1967	Dredge Loc. (mile points)	1/4 Mile Upstream	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2.19)	Rouge R. T15 (MP 1.09)	DT R139	DT 19.0 R142
	8-24	None	•	•	1	•	1.7	2.0	1.5	1.0
	8-31	2.67 to 2.94	•	8.8	•	5.0	1	•	•	•
	7-6	2.55 to 2.94	5.7	•	4.2	3.5	3.5	2.8	1.0	2.4
	9-14	2.40 to 3.00	ı	55	5.5	3.1	9.4	2.9	.73	.71
	9-21	9-21 1.93 to 2.63	.95	14	3.5	1.3	4.5	1.8	.22	.82
40	10-5	1.87 to 2.69	1	12	4.7	9.4	6.1	2.1	.52	.42
	10-12	10-12 1.50 to 2.17	3.7	18	11	7.6	3.5	6.8	. 54	.78
	10-19	1.45 to 2.17	3.3	7.1	8.1	9.6	5.1	10	.61	.10
	10-29	Old Channel	.88	9.0	2.2	•	•	•	1.2	.82
	11-8	0.87 to 1.46	2.6	34	5.7	1.4	3.3	9.9	.71	.41
		Average	2.9	20	5.6	4.5	4.0	4.4	.78	.83
		Maximum	5.7	55	11	9.6	6.1	10	1.5	2.4
		Minimum No. Samoles	<u>\$</u> , •	-: œ	2.2 8	 	1.1	w. «	.22 9	.10
				,	,	•	•	•	`	`

TABLE 6 (cont'd)
DREDGING OPERATION S. MPLING RESULTS
PARAMETER: 0: & Grease (mg/l)

0 R142	1	•	1	7	15	4	Э	٠	2	ı	6 15 2 6
DT 19.0	ı	1	•	2	36	4	2	7	9	ı	36 2 6
Rouge R. T15 (MP 1.09)	ŧ	•	•	91	16	Э	4	, v	•	•	9 16 3
Rouge R. T18 (MP 2.19)	•	ı	•	4	7	٣	4	5	1	•	27.85
1/2 Mile Downstream	•	•	•	12	9	7	4	4	ı	•	12 4 5
1/4 Mile Downstream		•	i	12	35	9	7	4	7	1	10 35 2 6
Behind Dredge	1	ı	•	29	10	7	5	က	3	•	10 29 3 6
1/4 Mile Upstream	'	•	,	ı	7	I	5	ť	2	•	4074
Dredge Loc. (mile points)	None	8-31 2.67 to 2.94	9-7 ^a 2.55 to 2.94	9-14 2.40 to 3.00	9-21 ^b 1.93 to 2.63	10-5 1.87 to 2.69	10-12 1.50 to 2.17	1.45 to 2.17	10-29 Old Channel	0.87 to 1.46	Average Maximum Minimum No. Samples
Date 1967	8-24	8-31	9-1a	9-14	9-21 _p	10-5	10-12	10-19	10-29	11-8	

a - Extensive oil slick covering the Rouge River b - Heavy oil slick between NYC RR (MP 1.47) and Wabash RR (MP 1.87) bridges.

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Turbidity (Jackson Units)

4

(

	Date 1967	Dredge Loc. (mile points)	1/4 Mile Upstre <i>a</i> m	Behind Dredge	1/4 Mile Downstream	1/2 Mile Downstream	Rouge R. T18 (MP 2,19)	Rouge R. T15 (MP 1.09)	DT 19.0 R139	.9.0 R142
ı	8-24	None	'	,	1		35	30	35	30
	8-31	2.67 to 2.94	1	20	•	35	•	ı	ı	ı
	9-7	2.55 to 2.94	35	•	35	25	25	<25	<25	<25
	9-14	2.40 to 3.00	ı	200	92	40	55	45	25	<25
	9-21	1.53 to 2.63	<25	110	20	<25	55	30	< 25	<25
	10-5	1.87 to 2.69	1	180	110	70	120	45	< 25	< 25
	10-12	1.50 to 2.17	09	220	160	. 06	65	100	<25	<25
	10-19		130	280	220	210	150	210	<25	< 25
	10-29		25	160	85	ı	1	•	07	25
	11-8	0.87 to 1.46	<25	130	35	<25	< 25	70	<25	<25
		Average Maximum Minimum No. Samples	50 130 < 25 6	200 500 50 8	100 220 35 8	65 210 < 25 8	66 150 < 25 8	69 210 <25 8	28 40 725 9	26 30 <25 9

42

The second second

TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Secchi Disc (inches)

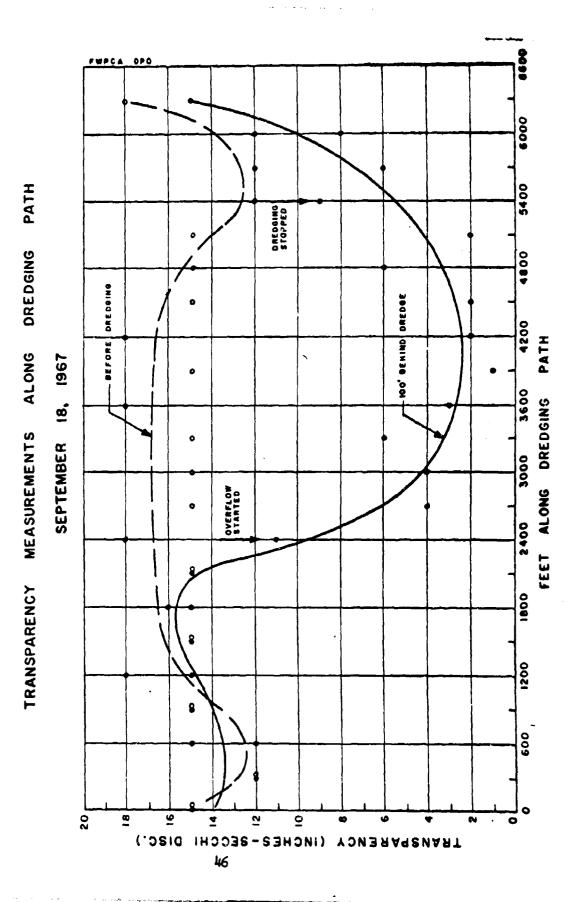
Date	Dredge Loc.	1/4 Mile	Behind	1/4 Mile	1/2 Mile	Rouge R.	Rouge R.		DT 19.0
~	(mile points)	Upstream	Dredge	Downstream	Downstream	T18 (MP 2.19)	T15 (MP 1.09)	R139	R142
24	8-24 None	•	1	,	•	18	18	30	18
8-31	2.67 to 2.94	•	1	1	1	1	ı	ı	1
6-7	2.55 to 2.94	18	•	17	1	16	18	30	30
9-14	2.40 to 3.00	1	1	7	6	7	12	28	24
9-21	1.93 to 2.63	54	3	7	16	6	11	28	18
10-5	1.87 to 2.69	ı	9	6	12	6	12	54	25
-12	10-12 1.50 to 2.17	11	7	9	9	11	9	23	26
-19	10-19 1.45 to 2.17	7	٣	9	9	9	9	20	04
10-29	Old Channel	18	3	တ	ı	•	1	14	91
11-8	0.97 to 1.46	14	٣	9	13	12	2	14	24
	Average	15	4	œ	10	11	11	23	25
	Maximum	24	9	17	16	18	18	30	70
	Minimum	7	3	9	9	9	5	14	1.6
	No. Samples	9	9	σο	9	x 0	œ	6	6

()

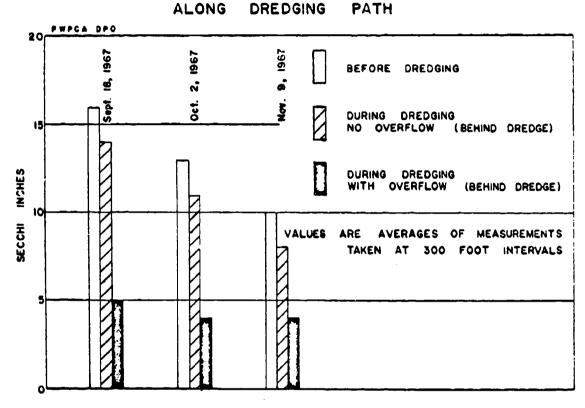
TABLE 6 (cont'd)
DREDGING OPERATION SAMPLING RESULTS
PARAMETER: Sulfate (mg/l)

(

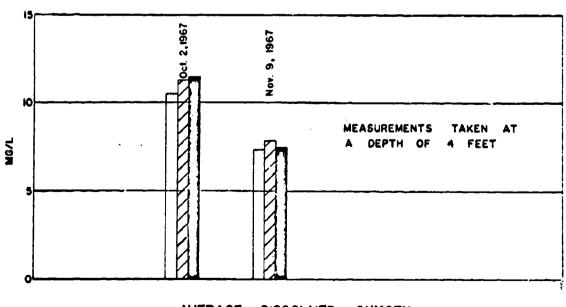
R142	16	17	1.7	19	91	15	17	13	18	16 19 13
DT 19.0	18	17	61	20	18	18	20	18	22	19 22 17 9
Rouge R. T15 (MP 1.09)	57	07	07	32	31	33	50	,	87	41 57 31 8
Rouge R. m T18 (MP 2.19)	55	39	32	38	26	27	48	1	54	40 55 26 8
1/2 Mile Downstream	ě	,	30	34	32	37	52	1	34	37 52 30 6
1/4 Mile Downstream	,	,	31	30	32	31	•	14	45	31 45 14 6
Behind Dredge	,	1	39	36	35	28	20	16	99	37 56 10
1/4 Mile Upstream	,	67	,	29	1	28	67	12	99	37 56 12 6
Dredge Loc. (mile points)	None	2.55 to 2.94	2.40 to 3.00	9-21 1.93 to 2.63	1.87 to 2.69	1.50 to 2.17	10-19 1.45 to 2.17	01d Channel	0.87 to 1.46	Average Maximum Minimum No. Samples
Date 1967	8-24 None	1-6	6-14	9-21	10-5	10-12	10-19	10-29	11-8	

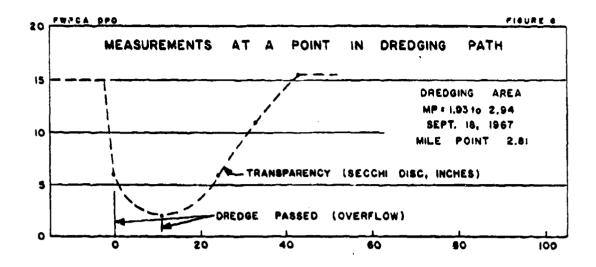

Transparency and Dissolved Oxygen Measurements

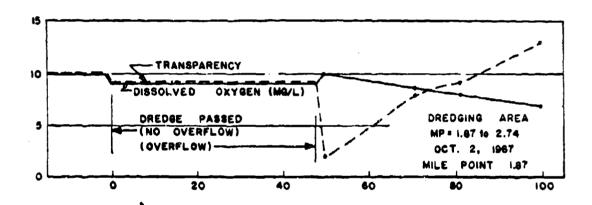
On three occasions, special field studies were conducted in the vicinity of the dredging operation. Before the arrival of the dredge the field
crow recorded transparency (seechi disc, inches) and dissolved oxygen readings every 300 feet along the estimated path of the dredging operation.
When the HOFFMAN returned to the Rouge, the FMPCA boat followed the dredge
as a distance of approximately 100 feet. Transparency and dissolved oxygen
values, now under the direct influence of the dredging operation, were recorded every 300 feet as before. The results of the survey (pre-dredging
and during dredging) for September 18, 1967, is shown in Figure 4. Surveys
on Occober 2 and November 9 showed similar transparency results.

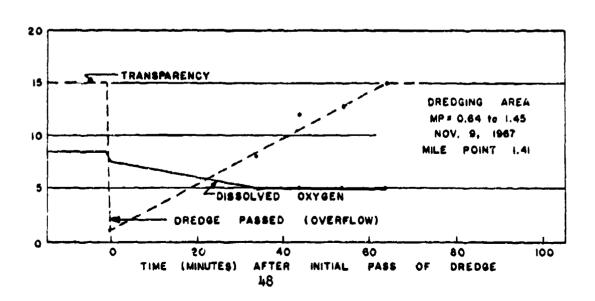

The results of all three surveys showed that the average transparency before dredging was slightly greater than the transparency during the dredging operation with no overflow. After overflow occurred substantial decrease. In transparency were noted. The average secchi disc readings during the three phases are shown in Figure 5.

Measurements of dissolved oxygen were made simultaneously with the secchi disc readings. The results in Figure 5 show no significant immediate change in dissolved oxygen level as a result of the dreaging operation.


The transparency and dissolved oxygen were also measured at time intervals at a particular point on the dredging path. Significant decreases in transparency were noted when the overflowing dredge passed. The transparency of the water returned to its pre-dredging value after varied time periods. (See Figure 6). The dissolved oxygen levels declined after the dredge passed as shown in Figure 6 .


TRANSPARENCY AND DISSOLVED OXYGEN MEASUREMENTS




AVERAGE TRANSPARENCY

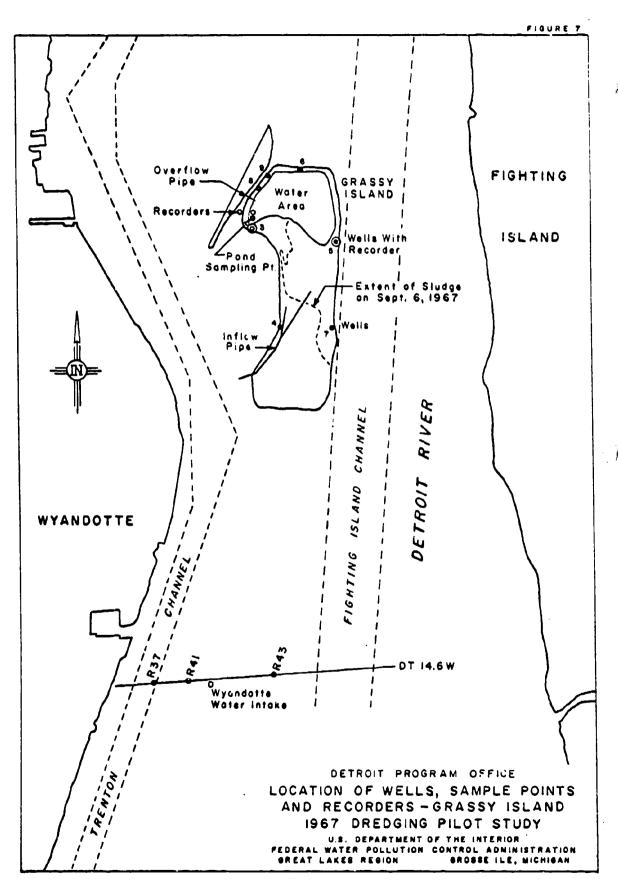
AVERAGE DISSOLVED OXYGEN

They make the said of the said

Observations

The most severe pollution caused by the dredging operation appeared to occur during the overflow of the hopper bins. At this time, the
dredge left a trail of turbidity and surface oil often extending to 150
feet in width. The dredging operation prior to overflow caused minor
discurrences observable at the surface from the operation of the drags.
Expectes were observed rising to the surface occasionally bringing up
a slight oil film. The bubbles were probably gases released from the
ancerobic organic decomposition in the bottom material. However, the
probable action of not only the HOFFMAN but also passing freighters
was observed to stir up the bottom sediments to create turbid areas.

We leekage was observed while the dredge was in transit to Grassy Island and no significant leakage occurred at the inflow hookup during the unloading operation.


B. Dumping Grounds - Grassy Island Effect of Dumping Ground on Detroit River

A water quality study was made of the Detroit River immediately downstream from Grassy Island. Three stations (R37, R41, and R43; 600, 1100, and 2300 feet from U.S. shore, respectively) on range DT 14.6 (less than 3/4 mile south of Grassy Island) were sampled at mid-depth weekly to detect changes in water quality during the period of the dumping operation. The results of the analysis of the samples are shown in Table 7. The City of Wyandotte water intake is also located south of Grassy Island as shown in Figure 7. The results of the routine analysis of this city's raw water before treatment and distribution are shown in Table 8.

Seepage Through Dikes

7

Seven wells were installed at points along the circumference of the dike to determine the amount of seepage through the dike into the Detroit River. The well holes were hand drilled into the dike the depth required to reach the water table. A six-inch casing with a well screen (approximately 3 feet in length), attached at the lower end, was then dropped into the hole. The hole surrounding the pipe was then backfilled and the casings were covered with a threaded metal cap to prevent contamination of the well. Each well was pumped the day before samples were to be collected. On the sampling day, the coliform samples were first collected with a J.Z.bacteriological sampler and then the chemical samples were collected with a Kemmerer depth sampling device. A surface sample was also collected from the Grassy Island pond at the point as shown on Figure 7. The results of the analyses of well and pond samples are shown in Table 7.

There are the second second

. - ...

1967 SAMPLING RESULTS - GRASSY ISLAND AREA Parameter: Temperature (°C)

					Wells					DT 14.6	
Date	Pond	3	4	5	9	7	æ	6	R37	R41	R43
9-6	•	•	•	•	•	•	•	•	19.5	19.5	19.5
6-13	1	15.0	15.0	15.0	17.0	15.0	16.0	15.0	19.0	19.0	18.5
9-20	0.02	16.5	15.0	16.0	18.5	17.0	17.0	17.5	g.0	ง. ช	20.5
10-3	1	•	•	•	•	•	1	•	13.5	14.0	13.0
10-4	•	15.5	•	16.0	16.0	16.0	15.0	0.91	14.0	14.0	14.0
10-11	13.0	14.0	13.0	14.0	14.0	13.5	13.0	13.0	13.0	12.5	12.5
10-18	0.11	13.5	ŧ	13.0	•	13.0	11.5	12.5	13.0	13.0	13.0
10-25	•	•	•	•	•	•	•	•	10.5	10.5	10.5
10-26	•	•	•	•	•	•	•	•	10.0	5.6	9.5
11-11	10.0	13.0	13.0	13.0	•	13.0	n.0	12.0	•	•	•
11-7	3.5	11.5	0.11	0.H	٠	10.0	7.5	10.0	7.0	6.5	6.0
11-27	1.0	•	•	1	•	1	•	•	•	1.5	2.0
11-28	1	•	•	•		•	•	•	1	2.5	2.5
11-29	•	•	ı	•	•	•	•	•	•	5.0	5.0
Average 1 Maximum 2 Minimum No. Samples	10.0 20.0 1.0 les 6	14.0 16.5 11.5	13.5 15.0 11.0	14.0 16.0 11.0	16.5 18.5 14.0	14.0 17.0 10.0	13.0 17.0 7.5	13.5 17.5 10.0 7	14.0 21.0 7.0	11.0 22.0 11.5	2.5 2.0 13

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: pH (standard units)

FWPCA, DPO			i i	Parameter:		(stander	pH (standard units)	_			
					Wells					DT 14.6	
Date	Pond	3	4	2	9	7	8	6	R37	R41	R43
9-6	•	•	•		•	1	•	ı	7.6	7.8	8.0
9-13	•	7.0	7.4	7.0	7.4	7.0	7.0	7.1	6.7	8.0	4.9
9-20	6.9	6.8	7.6	7.2	7.3	6.8	8.9	7.0	9.7	6.7	8.0
10-3	•	•	•	•	•	•	•	•	8.0	8.2	8.1
10-4	•	7.0	1	4.7	7.8	7.0	7.0	4.7	8.0	8.1	8.5
10-11	7.8	4.7	7.8	6.9	7.7	6.5	7.3	4.9	8.0	8.0	8.1
10-18	7.7	7.4	•	6.9	ŧ	7.4	7.1	4.7	7.8	8.0	8.0
10-25	•	•	•	•	•	ŧ	•	•	8.0	8.2	8.2
10-26	1	•	1	•	1	•	1	•	6.7	8.0	8.5
11-1	9.7	7.1	7.8	7.5	•	6.8	7.2	7.2	1	•	•
11-7	8.2	8.0	7.8	8.2	•	7.8	8.1	6.7	8.2	8.3	8.4
11-27	8.1	•	•	•	•	ı	1	ı	•	8.1	8.5
11-28	•	1	•	•	•	•	•	ı	•	8.1	8.1
11-29	•	•	ı	•	•	•	•	•	•	8.0	8.2
Averago Maximum Minimum No. Samples	7.7 8.2 6.9 6.9	6.8 6.8 7	7.6.7	6.8 6.9 7	7.6 7.8 7.3	7.0 7.8 6.5	6.8 7.2 6.8	7.2 7.9 4.9	7.9 8.2 7.6 10	8.1 8.3 7.8 13	8.1 8.4 7.9

TABLE 7 (cont'd) 1967 SAMPLING RESULTS - GPASSY ISLAND AREA

Ħ

	FWPCA, DPO	~			PARAMETER:		Conductivity (umhos/cm)	(amplos)	cm)			
						17				1	DT 14.6	
•		Dead	~	4	5	9	7	8	6	R37	R41	R43
1	Date	NIOL					(•	•	•	·	•
	9-8	•	1	ı	ı	•	ı					•
	9-13	,	1100	3500	1300	2300	0001	2000	1300	250	2 4 0	O#2
	9-20	0011	2200	9800	1300	2200	7000	1800	1200	250	240	230
	10-3	•	,	•	•	•	•	•	1	230	210	េដ
	70-7	1	2400	•	1700	2200	3700	1.500	1100	240	220	220
	10-11	1100	2800	2300	1600	2300	3700	2000	1300	250	230	220
54	10-18	096	3600	ı	1600	•	3500	1600	1100	250	230	घट
	10-25		ı	1	1	•	ı	•	•	260	220	220
	10-26	•	•	ı	•	ı	1	•	1	280	230	250
	1 -	1000	9600	2900	1500	١	37.00	1600	1300	ı	1	t
	11-7	05.6	2500	2900	1700	•	3500	1600	1200	300	০র	220
	11-27	1000	ι	•	•	•	ı	1	1	•	220	210
	11-28	•	1	•	•	•	1	1	•	•	ಂದ	20
	11-29	ı	1	ı	ı	•	١,	•	•	١	0Z	88
	Average 1000 Maximum 1100 Minimum 950 No. Samples 6	1000 1100 950 1es 6	2400 2800 1100	3000 3500 2800 5	1500 1700 1300 7	2200 2300 2200 4	3700 4000 3500 7	1700 2000 15 70	1200 1300 1100 7	260 300 240 9	220 240 210 12	200 200 12

The transfer of the

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Peremeter: Alkalinity (mg/l as CaCO₂)

					Wells					DT 14.6	
Date	Pond	3	7	5	9	7	80	6	R37	R41	R43
9-6	1	•	•	•	•	•	•	•	775	61	11
9-13	•	250	980	290	7 30	330	270	099	77	11	83
9-20	960	8	830	530	004	099	300	270	42	75	79
10-3	•		•	•	•	•	•	•	511	73	92
10-4	t	08 4	•	011	380	650	570	300	79	78	78
10-11	530	044	770	530	330	540	8	380	78	92	75
10-18	360	340	•	510	•	240	230	270	79	75	73
10-25	•	•	•	•	•	•	•	•	80	82	78
10-26	ı	•	•	•	•	•	•	1	82	82	92
11-1	862	094	200	550	•	009	310	410	•	•	•
11-7	980	09+	670	270	•	28	8	330	82	72	11
11-27	<i>5</i> 10	•	•	•	•	•	•	ı	1	82	28
11-28	•	•	•	٠	•	•	•	t	•	11	11
11-29	•	1	•	•	•		•	ı	•	81	92
Average 270 Maximum 290 Minimum 260 No. Samples 6	270 880 860 les 6	250 7	780 890 630 5	520 590 440 7	00 04 00 04 00 04 00 04	550 660 330 7	290 380 230 7	370 660 270 7	72 82 42 10	77 82 72 13	77 83 133

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Chlorides (mg/l)

					Wells					DT 14.6	11
Date	Pond	3	4	5	9	1	80	6	R37	R41	R43
9-6	•	•	•	•	•	•	•	1	15	13	8
9-13	•	33	88	8	83	88	%	160	15	12	ជ
9-20	130	۶۶	61	ĸ	90	230	100	130	13	15	ជ
10-3	•	•	•	•	•	•	•	ı	12	6	10
10-4	•	110	•	ౙ	ま	230	CHI	140	15	ជ	01
10-11	130	140	75	೮	ま	220	ori	88	15	01	6
10-18	130	120	•	7	•	300	130	110	ឥ	a	6
10-25	•	•	4	•	•	•	•	ı	17	10	10
10-26	•	•	•	•	•	•	•	•	ឥ	10	٥,
11-1	140	140	59	%	•	8	977	88	•	•	•
11-7	130	140	9	62	•	170	971	متد	88	0	6
11-27	160	•	•	٠	•	•	•	•	1	10	80
11-28		ı	٠	•	•	•	•	•	1	12	97
11-29	•	,	•	•		•	•	•	•	12	6
Average	140 160 120 les 6	110 140 33 7	28.E.	8882	2844	88 071 7	110 140 66 7	860 78 L	17 18 10	45 % E	01 11 8 113

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Peremeter: Phenols (ug/l)

FWPCA, DPO	•		1	Par	Paremeter:	Phenol s	Phenols (ug/1)				i
					Wells					DT 14.6	
Date	Pond	~	7	5	9	7	80	6	R37	R41	R43
9-6		•	•	•	•	•	•	•	15	₹	91
9-13	,	10	10	7	6	-	15	n	9	9	9
9-20	83	20	1,4	97	ω	13	13	12	15	Ħ	9
10-3	•	•	•	•		ı	ı	ı	5	7	~
10-4		18	•	7	9	6	7	n	6	ထ	9
10-11	6	13	m	œ	۲	12	15	17	10	6	6
10-18	75	12	•	6	•	07	8	6	12	6	6
10-25		•	•	1	•	•	•	1	12	80	9
10-26	•	•	•	•	•	•	•	1	12	9	5
11-1	13	10	80	10	•	٧	æ	80	•	•	•
11-7	•	•	•	1	•	•	•	•	•	•	٠
11-27	01	•	•	•	•	•	•	•	•	80	ν.
11-28	•	•	•	1		•	•	•	•	4	9
11-29	•	•	•	•		1	•	•	•	. #	Ŋ
Average Maximum Minimum No. Samples	13 9 8 5 9	12 18 10 6	6 4 6 4 €	10 16 7	\$ \$\square\$	13 6 5 6	115	11 14 8 8	115 29	24 4 12	7 16 12

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Dissolved Oxygen (mg/l)

HECA, DPO

					Wells					DT 14.6	
Date	Pond	6	7	5	9	7	8	6	R37	R41	R43
9-6		•	•	•	•	1	1	ı	•	8.6	8.5
9-13	•	9.	4.	.=.	1.1	œ๋	۲.	6.	8.2	8.3	8.7
9-20	۲.>	1.2	3.3	ı.	6.	9.	ż.	1.0	8.2	8.0	9.8
10-3	•	•	•	•	•	•	•	•	3	•	•
7-01	•		•	9.	φ.	4.	9.	1.6	8. 6	8.6	10.0
10-11	r;	1.2	9.9 S. 9	લ	6.	1.0	1.1	1.2	9.5	9.5	7.6
10-18	3.5	1.5	ı	æ	ı	1.2	1.0	2.1	9.5	9.6	9.8
10-25	•	•	t	•	•	•	1	;	10.4	10.5	10.7
10-25	•	•	•	•	•	•	•	1	10.2	10.6	10.7
11-11	1.7	1.5	1.5	۲.		5.0	1.4	1.1	•	•	•
11-7	5.7	8.	2.1	ญ	•	1.2	1.1	٠.	10.5	11.3	п.3
11-27	6.0	•	•	•	•	•	•	ı	•	12.8	12.6
11-28	•	•	•	•	•		•	•	•	12.7	12.9
11-29	٠	•	•	•	,	•,	٠	•	•	12.7	12.6
Average 2.9 Maximum 6.0 Minimum < .1 No. Samples 6	2.9 6.0 < .1	0.11.	0 m * 10	4.જં પં ⊢	0.1 6.1 8.4	9.0 9.0 4.	8.4.4.	2.1 2.1 5.	9.5 10.5 8.2 8	10.4 12.8 8.0 12	10.5 12.9 8.5

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Peremeter: BOD (mg/l)

FWPCA, DPO	L		4		Parameter:	100 100 100 100 100 100 100 100 100 100	(mg/1)				
					Wells					DT 14.6	
Date	Pond	-	77	2	9	7	80	6	R37	R41	R43
9-6		•		•	•	1		•	4	α	н
9-13	•	ထ	91	ন	2	17	6	10	m	m	m
9-20	24	12	13	8	9	6	7,7	24	2	4	m
10-3	•	ı	•	•	ı	1	ı	•	-3	7	α
10-4		8	•	18	5	7	π	73	7	4	ĸ
10-11	17	6	10	Ħ	٧	80	6	ឥ	~	m	a
10-18	15	8	1	11	•	10	10	170	4	ĸ	αı
10-25	•	•	1	1	•	•	•	ı	.	8	0
10-26	•	•	•	•	1	•	•	•	a	α	7
11-1	13	9	4	2	1	ব	٣	13	•	•	1
11-7	*	10*	*	16*	•	*	*9	#5#	2*	*	* ι
11-27		1	•	•	•	•	•	•	•	က	8
11-28		1	•	•	,	ı	•	•	1	*	*
11-29	Į	1	•	•	ı		•	•	ı	7	ю
Average 18 Maximum 42 Minimum 7 No. Samples 6	18 12 12 17 19	18% ⊬	10 16 14 5	1881	v ∕o v∕≄	8 17 7	944 87	54 170 10	100	3 13	13 13
*Estimated	Imated				7						

59

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: COD (mg/l)

Ŕ

	243			~ 1	13	7	< 1	10	9	9	10	•	8	%	7	শ্ৰ	~ % C Z Z
	9.41 TO	T.		-	27	ထ	છ	15	#	9	07	•	15	15	7	-4	41.57 4.51
	122	2		6	13	76	∞	18	₹	16	t t	•	टा	•	•	1	16 27 8 9
		2	•	120	ਹ ਹ	1	380	130	200	•	•	120	140	ı	•	•	988 1886 1
COD (mg/1)		×	•	8%	160	•	150	5£0	120	1	1	160	130	t	•	•	220 240 120 1
		/	•	80	210	•	%	38	160	•	1	170	130	•	•	•	200 270 130 7
Parameter:	Wells	9	•	55	太	1	ಧ	%	•	•	•	•	•	•	1	1	8 K 73 4
		5	•	8	130	ı	8	88	æ	•	•	8	29	•	٠	•	28 28 1
1		4		8	620	•	1	280	٠	•	•	370	350	•	1	•	370 620 250 5
		3	•	160	180	•	8	150	170	,	•	120	21	•	•	•	170 220 120 7
0		Pond	•	•	950	•	•	130	ů	•	•	9	85	ౙే	•	•	110 160 84 les 6
FWFCA, DPO		Date	9-6	9-13	9-20	10-3	10-4	10-11	10-18	10-25	10-26	11-11	11-7	11-27	11-28	11-29	Average 1. Maximum 10 Minimum 8
	•	ı							60					*			

TABLE 7 (cont'd)
1967 SAMFLING RESULTS - GRASSY ISLAND AREA
Parameter: Total Phosphate (as PO,) (mg/l)

感

FWPCA	FWPCA, DPO			Par	Parameter:	Total Ph	Total Phosphate (as Pop) (mg/1)	(as PO _k)	(1/8面)			
						Wells					DT 14.6	
Date		Pond	3	47	5	9	7	8	6	R37	R41	R43
9			•	•	•	•		•	•	•	,	•
		•	- 1	۲ .	3.9	.89	64.	2.3	1.8	.37	8;	तः
9-20		1.9	.63	8.8	1.5	.39	.97	1.1	2.9	.29	.27	.23
ָּרְ קַּרָ		`		•	1	•	•	•	•	.60	.55	.32
4-01		•	4.€	•	2.1	2.1	2.3	2.9	9.1	84.	.43	44.
10-11		1.0	.63	2.0	1.3	.37	1.3	4.5	2.0	.39	.33	4.
81 -01	~	1.1	1.7	•	.61	•	1.2	1.6	5.5	84.	.18	61/
10-25		•	•	•	•	1	•	•	,	. 52	.55	74.
10-26	, v	,	•	1	•	•	•	•	ı	.57	88	.27
11-1		12.	₫.	3.3	ŭ	•	1.5	1.1	1.9	1	•	1
11-7		, 8;	.81	.79	ų.	•	κ̈	1.0	1.8	.61	£#.	.30
11-27	7	<u>ج</u>	•	1	•	•	•	•	ı	•	8.	.15
11-28	. co		•	•	1	•	•	•	•	ı	8	.12
11-29	6	•	•	•	•	•	•	•	1	•	•30	.16
Average Maximum Minimum	age mum mum	% e.i.	7.4 5.63.	1.68 8.8 L	3.9 9.6 IZ.	40. 1.5 7. 1.37.	2.3 2.49	1.2 2.1 7.0	3.6 1.81 7	84. 12. 29.	%;65 81: 12	44. L. C.
ė ()	No. Samples	O S	_						;	:		

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Total Soluble Phosphates (as FO_b) (mg/l)

						Wells					DT 14.6	
Date		Fond	3	4	5	9	7	œ	6	R37	R41	R43
9-6		1	•	•	•	•	•	•		•		•
9-13	~	•	.07	.13	8.	.03	Ж.	.12	.23	8.	8.	8.
9-20	-	94.	8.	i.	₹.	ਬ. ਨ	8.	9.	1.2	ส.	.19	.18
10-3				•	•	1	1	•	ı	.33	8.	41.
10-4		1	2.3I	•	.53,	.53	89.	1.0	7.7	.27	.30	.23
10-11		.61	ئ .	8.	91.	8	₩.	•19	.63	ಣ.	.15	8.
10-18	øn.	6 4 .	₹į	•	8.	•	8	₹	8.	.30	.18	.18
10-25	2		•	•	•	•	ı	•	•	₹	71.	8.
10-26	v o	•	•	ı	•	•	:	ı		.39	.19	.16
11-1		.19	.07	8	٠٥.	•	ਜ ਼	77.	<i>x</i> 8	•	1	•
11-7		8.	.17	.12	چ	•	8.	Ħ.	₹.	.03	.10	.05
11-27	7	.18	1	•	•	•	1	ı	•	•	.15	٠٥٠
11-28	&	•	•	•		•	•	ı	1	•	8.	.05
11-29	6	•	•	•	4	•	1.	•	•	•	ন	8.
Average Maximum Minimum No. Sam	Average Maximum Minimum No. Samples	ૡ૽ૡ૽૱૾	3. E. S. L	ü%s.	11.53	34. 82. 0. 4	<u> </u>	.35	£ ^{4.1} &	4.8.8.0	81.66.61	યં ક્ષે રું _ક

1967 SAMPLING RESULTS - GRASSY ISLAND AREA Parameter: Mitrate-N (mg/l)

					1100					DT 14.6	
Date	Pond	-	7	5	9	7	8	6	R37	R41	R43
9-6				,		•	•	1	۲. >	۲. >	۲. >
, 6	•	, ,	, α	, ,		4	۲, 4	8	4.	ú	ú
C1-6	1	o N	o.	o -1	.	,	2	۱ :	r	, ,	·
9-20	ব.	1.5	3.5	6.	·5	1.2	8.2	13	÷	Ņ	ņ
10-3	1	•	1	•	•	1	ŧ	•	ů.	4	4
10-4	•	ω,	•	\$.	ú	7.9	٠.	2.4	÷.	÷	••
10-11	4.	8.	1.3	••	₽.	9.6	9.	1.2	e.	ų.	•3
10-18	1.2	7.5	•	ဆ	. 1	19	14	8	6.	9.	÷
10-25	•		•	ı	•	•	•	ı	4	4.	≄.
10-26	1	•	•	•	•	•	•	ı	۲.	٦.	۲.
11-1	1.7	1.0	0.5	.⊐.	•	5.6	Ġ	5.6	•	•	1
11-7	4	0.4	9.4	φ.	•	8.8	5.5	9.5	- 7.	٥į	ن .
11-27	٠.	•	•	•		•	•	•	ů.	ů.	÷.
11-28	ı	•	•	•	1	•	•	•	. ≠.	.વ.	₫ .
11-29	ı	•	ı	•	ı	•	٠	•		-₹	ب
Average .8 Maximum 1.7 Minimum .4 No. Samples 6	.8 1.7 1es 6	2.5 4.5 7.5	นา ผล้ำห	1.68	veas	8.2 19 1.2	4.8 14 7.	10 22 1.2 7	4	, , , , , , , , , , , , , , , , , , ,	64. 1. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Mitrite-W (mg/l)

, in

FWPCA, DPO	PO			Pare	Persenter: N	Mitrite-N	(1/2)			•	
					Uo 1 1 o					DT 14.6	
Date	Pond	3	77	5	9	7	80	6	R37	R41	R43
9-6			,	•		•	•	•	8	ਬ ਂ	۵. م
9-13	•	8.	•	•	•	Ļ.	1.4	1.0	ġ.	g.	g ,
9-20	ਰ. v	•	•	•	•	đ,	.33	.85	ġ.	ଟ.	ਝਂ
10-3	•	•	•		•	ı	1	•	ġ.	ಕ.	ಕ.
10-4	•	8 .	•	8 .	ه. ه.	ķ	8.	8.	ę.	g .	ъ.
10-11	ਬ.	.03	.05	.03	ਵ ਂ	.85	5	8.	ø.	6 .	ಕ.
10-18	.05	۵.	•	કુ	٠	1.0	41.	.18	8.	ę.	ġ.
10-25	•	ı		•	•	1	*	•	8.	ġ.	ą.
10-26	•	t	•	٠	•		•	•	8	8	ಕ.
11-1	8	9	8.	8	•	8.	8.	.12	•	•	•
11-7	8	đ.	8	.03	1	.39	રું	8.	8.	ಕ.	ಕ.
11-27	3	•	•	•	•	1	•	•	•	ಕ.	ھ .
11-28	1	•	•	•	•	•	•	•	•	ю.	ಣ.
11-29	•	1	•	•	•	•	•	•	1	ಕ್ಕ	ත. ×
Average .04 Maximum .08 Minimum < .01 No. Samples 6	ين. 86. مانم 91 م			នួខ ខុខ	^ ^ ឧ្ខំខ្ _∽	40.	8.1. 4.1. 8.	1.0 .06	ឧ៍ខ្ល ឧ៍ដ	8 . 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	> & & & & & & & & & & & & & & & & & & &

64

Them best the something

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Ammonia-N (mg/l)

ALL PROPERTY.

					Wells					DT 14.6	
Date	Pond	3	4	5	9	7	8	6	R37	R41	R43
9-6	•	1:1	6.0	2.8	2.2	•	2.4	•	0.32	< 0.05	0.18
9-13	•	1.0	9.0	6.6	1.2	1.6	1.7	1.6	0.06	90.0	< 0.05
9-20	84	2.9	1.1	5.7	1.0	1.7	2.9	n.0	0.05	•	ı
10-3	•	•	•	•	1	•	•	•	0.18	0.14	< 0.05
10-4	•	3.₺	•	3.5	9.0	2.1	5.0	17.0	0.32	0.08	0.18
10-11	ស	5.1	0.7	3.5	9.0	5.6	3.2	5.0	0.25	0.12	0.30
10-18	18	3.3	,	3.1	•	2.5	3.3	9.5	0.2ª	0.14	0.12
10-25	•	•	•	1	•	1	1	•	0.29	0.18	0.18
10-26	•	•	ı	•	•	•	•	•	0.36	0.18	0.2 <u>4</u>
11-1	81	5.6	0.7	3.1	•	1.9	4.2	3.2	•	1	•
11-7	18	6.4	0.8	5.6	•	2.2	4.8	4.2	0.40	•	0.14
11-27	9	1	•	1	•	•	1	1	ı	0.18	< 0.05
11-28	•	•	•	•	٠	•	•	•	•	0.17	0.10
11-29	•	•	•	1	•	•	•	•	ı	0.12	0.08
Average 17 Maximum 21 Minimum 6 No. Samples 6	17 22 6 les 6	3.50 4.00 8	0.8 1.1 0.6	6.00 8.00 8.00	1.1 2.2 0.6 5	2.6 2.6 7	3.5. 1.0. 8	7.3 17.0 1.6	0.25 0.40 0.05 10	0.13 0.18 < 0.05	0.14 0.30 < 0.05
)						Ì					1

65

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Organic-N (mg/l)

FWPCA, DPO	C			Parameter:		Organic-N	(mg/1)	;			
					Volle					DT 14.6	
i	7000	~	7	5	9	7	8	6	R37	R41	R43
Date 9-6	Pilo	0.67	0.30	0.32	ካተ 0	•	2.08	•	0.20	0.15	< 0.05
6-1 3	•	0.37	0.19	< 0.05	< 0.05	0.72	4.70	₹.°0	< 0.05	90.00	< 0.05
9-20	0.55	0.27	0.22	0.10	< 0.05	0.48	99.0	•	90.0	ı	•
10-3	•	•	•	•	•		•	ŧ	0.08	0.10	< 0.05
7-01	•	9.0	•	0.14	0.14	0.32	0.37	1.25	0.10	0.10	0.11
10-11	9.0	0.0	0.20	0.18	< 0.05	< 0.05	0.22	0.12	0.W	0.13	0.10
10-18	0.30	0.43	ı	0.01	1	0.58	0.30	0.46	0.05	0.07	0.14
10-25	•	•	i	•	•	1	•	•	0.16	< 0.05	< 0.05
10-26	•	•	•	;	•	•	٠	1	0.18	0.10	0.08
11-1	₹.°	# O	0.53	0.25	٠	0.10	0.27	90.00	·	•	•
11-7	9.8	0.29	0.19	0.13	•	0.29	45.0	0.30	0.08	₹.°0	0.08
11-27	ช.0	•	•	1	•	ı	•	•	•	< 0.05	90.0
11-28	•		•	1	•	•	•	1	•	0.09	0.18
11-29	•	•	•	•	٠	•	•	ı	1	0.10	0.11
Average C Maximum C Minimum C No. Samples	0.28 0.55 0.06 les 6	0.00 80.00 8	0.20 0.30 0.19	0.16 0.32 < 0.05 8	0.15 0.44 < 0.05	0.36 0.72 0.05	1.10 6.70 8	0.15 0.06 6	0.13 0.0 0.0 0.0 0.0	0.10 0.24 0.05 12	0.09 0.18 < 0.05 12

TABLE 7 (cont'd) 1967 SAMPLING RESULTS - GRASSY ISLAND AREA Parameter: Total Coliform (MF/100 ml)

,									9	DT 14.6	
Date	Pond	2	7	5	We115 6	7	80	6	R37	R41	R 43
9-6						1	•	•	7,600	000,00	23,000
9-13	ı	32,000	ooo, ₹	35,000	111,000	000,099	660,000 200,000 170,000	170,000	2,200	2,200	1,300
9-20	16,000	10,000	25,000	10,000	800	30,000	30,000 170,000	000,009	34,000	19,000	89,000
10-3		. 1	•	. 1	•	•	•	1	069	410	700
10-4	•	5,700	•	6,500	330	31,000	25,000	23,000	30,000	7,100	15,000
10-11	25,000	570	3,400	800	140	17,000	1,900	2,300	8,400	4,200	1,600
10-18	15,000	33,000	•	1,800	. •	18,000	000 , 84	48,000 330,000	550,000	000,09	004,4
10-25			•	•	•	•	•	•	2,000	00 1	90
10-26	ı	•	•		•	•	•	•	2,200	1,200	750
11-1	8,800	1,000	700	300	1	15,000	1,400	2,800	•	•	•
11-7	1,600	88	9	9	•	1,900	1,900	22,000	120,000	21,000	4,100
11-27	700	ı	•	•	•	•	•	•	1	3,700	800
11-28	•	1	•	•	•	1	•	•	t	009	70
11-29	1	•	1	•	•	•	•		1	2,800	100
Average 12, Maximum 25, Minimum	e 12,000 m 25,000 m 400 mples 6	5,700 33,000 220 7	3,400 94,000 60 60	1,800 35,000 60 7	600 111,000 140	18,000 660,000 1,900	25,000 200,000 1,400	23,000 330,000 2,300 7	6,500 220,000 690 10	3,700 90,000 400 13	1,300 89,000 70 13
•											

The many my many thing

TABLE 7 (cont'd) 1967 SAMPLING RESULTS - GRASSY ISLAND AREA Peremeter: Fecal Coliform (MT/100 ml)

					Wells					DT 14.6	
Date	Pond	3	4	2	9	7	8	6	R37	R41	R43
9-6	•	•	•	1	ı	•	•	1	8	8,300	120
9-13	•	160	8	< 10	Q.	1,900	8	2,000	130	8	130
9-20	830	160	8	984	8	ጽ	4,000	11,000	1,300	984	2,600
10-3	ı	٠	, ,	•	•			•			
10-4	•	•	,	•	•	•	•	•	•	•	•
10-11	750	160	10	52	< 10	%	977	99	810	340	3
10-18	8	700	1	01	•	770	%	1,000	23,000	4,300	230
10-25	ı	٠	,	•	ı	1	•	1	100	< 100	< 100
10-26	1	•	1	t	•	•	•	1	130	8	33
11-1	930	10	< 10	< 10	•	10	10	8	ı	•	,
11-7	7	97	α ∨	V	•	220	52	12	9,400	890	360
11-27	70	1	•	•	•	٠	•	•	•	310	10
11-28	•	1	•	•	•	٠	•	•	ı	3	9
11-29	•	•	•	•	•	•	•	•	•	250	70
Average Maximum Minimum No. Samples	1470 830 10 1es 6	160 700 10	018 × × × × × × × × × × × × × × × × × × ×	10 180 10	> 50 00 01 01 03	170 1,900 10 6	200 10 10 6	530 11,000 12 6	520 23,000 100 8	8,300 20 11	< 100 2,600 6 11

Man April 197

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Peremeter: Total Solids (mg/l)

					Wells					DT 14.6	
Date	Pond	3	4	>	9	7	<u>ω</u>	6	R37	R41	R43
9-6	1	ı	•	ı	•	•	•	ŧ	130	190	170
9-13	1	3900	000 1	1600	2500	7 300	3300	1200	190	190	170
9-20	720	2700	9100	1400	2200	3900	1800	1000	180	180	170
10-3	ı	•	•	ı	•	•	•	•	160	140	150
10-4	ı	3600		1800	2300	4100	1600	2300	220	170	150
10-11	670	2900	3300	1700	2300	3800	№ 800	1200	180	180	160
0 10-18	009	3300	•	1400	•	3400	1600	1800	220	150	140
10-25	ı	•	•	•	1	•	ı	1	190	170	160
10-26	•	•	•	ı	•	•	t	•	02 27	180	160
11-1	670	2700	5200	1400	•	000†	1800	1500	1	•	ı
11-7	009	3400	5500	1700	•	3400	1800	1400	88	160	180
11-27	680	•	ŧ	•	•	١	•	•	•	160	150
11-28	•	•	•	•	ı	•	•	•	•	160	150
11-29	1	•	•	•	ı	•	1	ı	•	140	150
Average 660 Maximum 720 Minimum 600 No. Samples 6	660 720 600 1es 6	3200 3900 2700 7	5400 9100 3300 5	1600 1800 1400 7	2300 2500 2200	3800 4,300 34,00 7	2400 4800 1600 7	1500 2300 1000 7	200 160 10	170 190 140 13	160 180 140 13

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Suspended Solide (mg/l)

- 4

 											100	
						Wells				100	DI 14.0	679
Date		Pond	3	7	5	9	_	80	6	K3/	K41	K#7
9			•	•	•	•	•	•	•	11	25	5
6 6	~	•	62	8	710	340	8	98	001	86	14	10
9-20	, ,	8	, 29 9	5700	900	180	140	8	83	30	Ж	83
ָרְ בַּלְי)	`	•	•	•	•	•	•	•	23	19	15
10-4		•	17.00	•	160	120	1%	310	1600	83	88	18
10-11		62	8	024	1480	100	8.	3100	330	23	01	18
81-01	αQ	88	1000	•	250	•	001	530	1100	39	જ	я
10-25	Ž.	,	1	•	•	•	ı	•	•	33	88	8
10-26	9		•	•	•	•	ı	ł	•	£4	64	4
11-1		62	%	2300	140	•	570	0917	064	1	•	•
11-7	_	35	780	2200	170	•	88	330	64	88	ଫ	33
11-2	•	*	•	•	•	•	•	•	ı	•	•	•
11-2		8	٠	•	•	•	•	•	1	ı	•	•
Maximin No.	11-2 11-2 Average 47 Maximum 89 Minimum 20 No. Samples 8	33 89 89 89		2200 5700 290 5	330 710 140 7	1.100 1.00 1.00 1.00 1.00 1.00 1.00 1.0	190 190 190 1	3100 3100 7	- 609 1600 1,49		8848234B	48.84 ~ 3

70

Mark Mary Miles 87.

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Persmeter: Dissolved Solids (mg/l)

					Uo 11 o					NT 14 6	
Date	Pond	3	7	5	6	7	8	6	R37	R41	R43
9-6	٠	•	ı	1	1	•	1	1	180	160	160
9~13	1	3700	3700	930	200	1000	2400 2400	790	160	170	160
9-20	630	200	3400	960	200	3800	1400	740	150	150	150
10-3	1	ı	1	•	•	•	•	•	130	120	140
10-4	¢	2500	ı	1700	2200	3900	1200	740	500	150	130
10-11	610	2700	2900	1200	2200	3800	1800	006	160	140	140
10-18	980	2300	1	1200	•	3300	1300	730	180	130	120
10-25	ı	•	1		•		1	•	160	150	130
10-26	1	•	•	•	ı	•	•	•	180	130	120
11-11	009	2400	2900	1300	•	3500	1300	1000	1	•	1
11-7	260	3600	3300	1500	•	3400	1400	910	500	130	150
11-27	640	•	1	•	•	•	•	•	•	130	120
11-28	•	•	1	t	•	•	•	t	•	130	120
11-29	1	•	1	,	1	1	•	ı	•	120	1
Average Maximum Minimum No. Samples	9 sa 079 260 260	2500 3100 2100 7	3200 3700 2900 5	1300 1700 930 7	2200 2200 2100 4	3700 \$100 3300	1500 2400 1200	830 1000 730	170 200 130 10	140 170 120 13	140 160 120 12

71

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Peremeter: Total Volatile Solids (mg/l)

					Wells					DT 14.6	
Date	Pond	3	7	5	9	7	8	6	R37	R41	R43
9-6	1	•	•	•	•	•	•	•	89	53	٧
9-13	•	35	930	8	2	700	88	360	89	69	73
9-20	180	06 4	830	350	450	750	360	240	₫	8	9
10-3	1	•	,	•	•	•	•	ı	Ж	₹	ま
10-4		82	•	530	009	950	350	1,50	85	55	13
10-11	160	230	810	6 7€	965	950	890	980	19	09	7.5
10-18	130	230	ı	82	•	989	₹	004	×	85	ಣ
10-25	•	•	•	•	•	•	•	•	59	55	04
10-26	1	•	•	•	•		•	•	8	143	75
11-1	190	8	880	<u>0</u>	•	\$	340	88	•	•	•
11-7	180	670	%	10	•	760	011	\$20	7	82	<u>3</u>
11-27	170	•	•	•	•	•	•	•	•	Ж	ĸ
11-28	•	•	•	,	•	•	•	1	•	Ж.	64
11-29	ı	•	•	1	•	•	•	•	ı	64	20
Average 170 Maximum 190 Minimum 130 No. Samples 6	170 190 130 130	610 780 1,90	990 990 910 5	390 530 280 7	550 600 450 450	850 1100 680 7	480 890 340 7	350 \$50 240 7	58 88 19	4 % 4 E	40 73 13

There may regard at the

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Perameter: Volatile Suspended Solids (mg/l)

					Wells					DT 14.6	
Date	Pond	3	4	5	9	7	8	6	R37	R41	R43
9-6	•	•	•	1	•	•	•	•	н	8	н
9-13	•	Ж	22	42	æ	35	120	62	8	-	Ø
9-20	₹	8%	340	9	ស	83	%	24	10	89	5
10-3	•	•	•	•	•	•	•	•	9	4	4
10-4	•	120	•	23	77	Į.	₹.	250	7	6	m
10-11	₹	88	24	37	15	33	330	61	7	6	5
10-18	12	8:	•	ឥ	1	&	141	150	н	~	٣
10-25	•	•	•	•	•	1	•	•	α	8	6
10-26	•	•	•		1	1	1	•	7	5	9
11-11	9	ま	180	18	•	‡	Ж	88	•	•	•
11-7	97	62	140	7.1	•	15	7.	89	14	α	٣
11-27	01	•	•	•	ŧ	ı	•	•	•	6	4
11-28	•	•	•	•	•	•	1	•	1	9	01
11-29	•	•	ı	•	•	•	•	•	4	.4	•
Average 15 Maximum 24 Minimum 6 No. Samples 6	15 24 6 1es 6	4888 F	25 22 22 22 22 22	28 172 7	ଅକ୍ଷୟ [ୁ]	28.83.72,	330 14 7	100 250 47 7	6 14 10	13	10 12 12

19

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: Iron (mg/l)

3 4	5							
		,	7	8	6	R37	R41	R43
,	t	1	•	•	1	78.	8.	
<u>.</u>	37	5.6	9.1	ま	9.8	. 89	, E	55,
<u>بر</u>	19	7.4	12	8.0	10	` 19 .	<u>.</u> 6	
<u>د</u>	•	•	ŧ	•		74.	; ?	<u>.</u> "
<u>ب</u>	9.6	3.0	12	9.8	92	.78	.61	3
••	17	9.6	13	57	15	ġ.	1.5	; <i>Y</i> ,
••	14	•	8.5	8.6	04	1.7	. 50	,13
••	٠	•	•	•	•	.85	.65	.68
••	ı	•	1	•	•	1.4	1.1	1.2
	9.5	•	37	6.0	ជ	ŧ	•	•
	8.3	•	3.5	7.6	ส	3.8	.81	.97
	,		• :	:				
94 230 9.5 10 7 5	37 8 7 8 3	v :	188.5 8.5	19 57 6.0	86 y r 83	3.5	5.4 8.5 8.5	.52 1.3 1.3

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Parameter: 011 and Grease (mg/l)

7

						Wells					DT 14.6	
•	Date	Pond	3	7	5	9	7	80	6	R37	R 41	R43
	9-6	•	•	•	•	•	1	4		•	•	•
	9-13		6	7	5	-	80	7,7	14	4	ជ	15
	9-20	01	10	21	5	1	70	ជ	9	10	10	п
	10-3	1	•	t	•	•	•	•	ŧ	m	٣	5
	10-4	•	۲	١	8	æ	ব	t	4	п	Ø	-
	10-11	m	6	m	4	æ	9	8	4	4	ĸ	æ
	10-18	8	N	•	٣	•	٣	m	က	8	N	7
	10-25	•	•	•	•	•	1	1	•	8	a	8
	10-26	•	•	١	•	•	•	•	ı	8	63	ю
	11-27	4									4	7
	11-28										4	8
	11-29										5	8
	Average 5 Maximum 10 Minimum 2 No. Samples 4	10 10 4 s 4	10 PP PP PP PP PP PP PP PP PP PP PP PP PP	12 3	4 50 0 5	V-W4	6 3 3 5	8 14 3	3 3 5	4 0 H &	4 11 ° 11	244
• ′	()						ì					

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Peremeter: Turbidity (Jeckson Units)

	R43	< 25	× 8×	8	× 33	83	× &	83	< 25	35	•	< 25	'3' 8' 8' 'V
DT 14.6	R41	< ×	× 8	< × ×	× %	× 23	× 83	× 83	< 25	2	•	•	25 52 52 52 52 52 52 52 52 52 52 52 52 5
	R37	< 25	80	× 8	× %	× 23	× 83	× %	80	04	•	۸ ج	8 8 8 8
	6	•	1 80	170	1	8	270	330	•	•	550	%	900 170 170
	80	•	1200	æ	•	88	3600	25	•	•	88	180	740 2600 180
	-	•	얡	170	•	83	120	18	•	٠	88	٥T	25 28 100 100
Wella	Q	•	2 6	240	•	22	120	•	•	•	•	•	170 3 4 0 75
	2	•	1200	200	٠	130	Š	8	•	1	140	54	340 1200 45
	4	•	5 ,	9	٠	•	2	•	•	•	3400	2300	1200 2400 340
	3	•	2300	989	1	1000	130	1000	•	•	82	6 %	2300 2300 230
	Pond	•	•	150	•	•	83	801	•	•	130	ጽ	87 150 25
	Date	9-6	9-13	9-20	10-3	10-4	10-11	10-18	10-25	10-26	11-1	11-7	Average Maximum Minimum

_ The man have the

TABLE 7 (cont'd)
1967 SAMPLING RESULTS - GRASSY ISLAND AREA
Paremeter: Sulfate (mg/l)

FWPCA, DPO	0			&	Parameter:	SULIBIL	CT/Sm) ansiTne				
					Wells					DT 14.6	}
Dare	Pond	3	7	5	9	7	88	6	R37	R41	R43
9-6	•	059	1500	240	720	•	360	•	15	•	큐
9-13	•	8	1300	82	88	1400	160	250	82	11	13
9-20	8	950	1700	150	820	1600	570	8	17	97	15
10-3				•	•	•	•	•	88	1	15
10-4	•	1000	•	3	950	1600	014	80	18	16	97
10-11	₹	200	1500	270	930	1500	380	150	31	41	17
10-18	, , #	1100	•	88	•	1400	०१४	120	8	17	97
10-25	, •	1	•	•	•	•	•	1	15	13	13
10-26	•	•	•	•	•	•	•	•	17	17	13
11-11	प्प	1100	2400	862	•	1300	270	120	•	ì	•
11-7	<u>,</u>	7700	1400	380	•	1300	0/4	130	97	15	8
Average 40 Maximum 50 Minimum 34 No. Samples 5	#0 50 34 ples 5	920 1100 320 8	1500 1700 1300 6	88 94 88 88 88	860 950 720 5	1400 1600 1300 7	270 760 270 8	136 258 7	18 28 15 10	15 17 13 8	17 38 13 10

Table 8
City of Wyandotte
Filter Plant Records
Raw Water Analyses
1967 FWPCA, DPO

	TURGIDITY	CHLONIDES	ALKALTÇITY	COLIFORM	
ATE	units	ms/l	<u>m=/1</u>	MPN/100 ml	
0				1. 200	
8-21	6	-	-	4,300	
8 -22	6 6 7 8 8 7 6 7	12	80	15,000	
8-23	7	-	-	4,300	
8-24	8	11.5	80	4,300	
8-25	8	-	-	4,300	
8-26*	7	14	7 8	3,900	
8-27	Ġ	-	-	2,300	
8-28	7	12	80	7,500	
	7				
8-29	<u>7</u>	•	-	2,300	
8-3 0*	7	12	80	4,300	
8-31	9	•	•	210	
٠,	10	11 6	80	a lion	
9-1	10	11.5	00	2,400	
2	7 6 6 7 6 6		-	930	
∠ -3	6	11	80	4,600	
9-4	6	•	-	4,600	
9-5	6	12.5	80	930	
9-6	7	•	•	2,400	
9-7	6	13	80	4,600	
9 - 8	6	-5	•	2,400	
9-9	š	12.5	80	2,400	
	6	12.)		2,400	
9-10		-	-	2,400	
9-11	12	11.5	81	750	
9-12	14	•	-	11,000	
9-13	11	11.5	7 8	7 50	
9-14	10	-	•	3,900	
9-15	7	12	80	9,300	
9-16	7	-	-	24,000	
9-17	7	11.5	78	110,000	
9-18			•	4,300	
	7 6 6	-	80		
9-19	6	12		4,300	
9-20	6	•	<u> </u>	4,300	
9-21*	7	12	82	2,300	
9-22	7	•	•	46,000	
9-23	7	12.5	80	24,000	
9-24	7	•	_	24,000	
9-25	7	11.5	82	1,200	
9-26	8		-		
	8	10	80	2,400	
9-27*		10	30	24,000	
-28	13	-	0.5	9,300	
9-29*	32	11	82	4,300	
9-30	3 9		-	4,300	
3-00	robable Stormwate:				

Table 8 (cont.)
City of Wyandotte
Filter Plant Records
Raw Water Analyses
1967

DATE	TU:GIDITY UNITS	Cillo: Tello mg/l	ALKALLIGITY mg/l	colifort MPH/100 ml	
10-1	18	10	78	4,300	
10-2	13	_	=	2,300	
10-3	12	10	23	2,300	
10-4	10		•	4,300	
10-5	15	10	8 2	9,300	
10-6#	14	-	•	750	
10-7#	18	` 11	8 o	4,300	
10-8 */	24	-	•	9,300	
10-9#	22	19	80	46,000	
10-10	50	-	-	15,000	
10-11	14	20	80	4,300	
10-12	12	-	-	2,300	
10-13	13	50	80	4,300	
10-14	11		-	2,300	
10-15*	12	11.5	80	9,300	
10 -1 6*	19	-	-	110,000	
10-10*	17	1/4	80	9,300	
10-17				46,000	*
	12	12	. 8o	15,000	
10-19	11 11				
10-20		15	- 80	24,000	
10-21	12	15		2,300	
10-22	11	• •	- 80	930	
10-23	11	8.5		9,300	
10-24	11	•	-	24,000	
10-25#	15	11.5	82	2,300	
10-26#	16	- 9 .5	-	2,300	
10-27 *//	28	9.5	80	4,300	
10-28	3 6	-	-	2,300	
10-29	17	10	80	4,300	
10-30	18	- 8	-	4,300	
10-31	35	8	80	3,900	
11-1*	31	-		2,300	
11-2	28	9	76	110,000	
11-3*	19	-	-	4,300	
11-4	11	11	80	9,300	
11-5	10	~	-	¥,300	
11-6	12	12.5	80	110,000	
11-7	12	-	-	4,300	
11-8	14	12	80	4,300	
11-9	13	-	•	4,300	
11-10	13	12	7 8	3,900	٠.
	bable Stormwate			•	()

*Probable Stormwater Overflow #Grassy Island Overflow Pipe Open

Table 8 (cont.)
City of Wyandotte
Filter Plant Records
Raw Water Analyses
1967

DATE	TURBIDITY UNITS	CHLORIDES mg/l	ALKALINITY mg/l	COLIFOR4 MPN/100 ml	
1411	UNITE	<u> </u>	145/2		
11-11*	11	-	-	9,300	
11-12	14	12.5	80	4,300	
11-13	16	<u> </u>	-	1,500	
11-14	14	14	7 8	930	
11-15	17	•	-	4,600	
11-16	19	` 10.5	82	430	
11-17*	28	-	-	9,300	
11-18	17	12.5	7 ⁸	4,300	
11-19	15	-	-	4,300	
11-20	14	6	80	4,300	
11-21	14	-	-	4, 300	
11-22	11	6	80	9 , 3 00	
11-23	12	-	-	4,300	
11-24	12	10.5	80	930	
11-25	9	-	-	1,500	
11-26	9	7.5	80	4,600	
11-27#	10	-	-	9 3 0	
11-25#	12	8	80	750	
11-29#	8	-	-	2,400	
11-30#	11	8.5	80	2,400	:
12-1#	28	10	94	15,000	
12-2*#	21	-	•	3,900	
12-3#	21			21,000	

*Probable Stormwater Overflow #Grassy Island Overflow Pipe Open

Overflow and Leakage

On October 2, 3, and 4, the field crew reported overflow of the Grassy Island dike at points on the north and east side of Grassy Island. Complet of the overflow were collected on October 3.

On three occasions, on overflow pipe (approximately 21 inches in diameter) located on the west side of the island (see Figure 7) was observed to drain the accumulated supermatent liquid. During the discharges which commenced on October 25 and November 27, samples were collected with a dis sampler directly from the overflow. Some leakage did occur even when the overflow pipe was sealed with a metal plate. Results of the analyses of dike overflow, leakage through overflow pipe, and the discharge through the overflow pipe are shown in Table 9.

Table 9
Rouge River Pilot Study
Grassy Island Overflow & Lenkage

			Estimated Flow	Pond Water Level
Date	Time	Type of Discharge	(CFS)	
10-3	1030	Overflow of dike 500' N. of well 7	د.>	576.5
10-3	1100	Overflow of dike 40' E. of well 6	۲. >	3.973
9-01		Overflow pipe opened at 1530 (no sample taken)		3.978
10-25	1438	Overflow pipe opened at 1433	80	576.8
10-25	1503	Overflow pipe open	10	576.8
10-26	1015	Overflow pipe open	10	5.75.6
11-1	1045	Leakage; overflow pipe	< .1	575.0
11-1	1155	Leakage; overflow pipe	<.1	576.0
11-15	1145	Leakage; overflow pipe	< .1	276.7
11-27	1047	Overflow pipe opened at 1017	&	576.6
11-28	0360	Overflow nipe open	10	ı
11-29	1040	Overflow pipe open	٣	574.7

	I mus	1.5 2.5 2.5	20.00	, v. v.	3.5	1010	: i	7.2 -	0.0 m		ળ ભૂતે ભૂતો	m;		-			
Pilot Stuly 1957 Table 9 (cont.)	h 011 пе/1	7200	a mid	m :	1.1	nj⊶ m		, mi	- ₹.670		1. (;)	: : : :	:	· 			•
	Organic Frage [mg/1	65	៖ មិន	9, _F	• '91. t	45.8		.17	6,8	. !	8 Ein	ο Q :		'			
	Archonfor till 108/13	87:	15	17	16	775	: :	16	21 61 61		भूद	g (4					· ·
	COD 1/8	120 120	₹ ಜ .	₹ & &	ವತ್ತೆ ಸ	388	· · · ·	ට	<i>२,७,</i> ०		28.	im	- 				
	100 14/1	3500	다유: ::::	= = ³	25.5	11. 		10	11 2		12	\ m	:				
	HU-III NO ME/E	8.8	1 1		187	2		8	.13		858	<u>۳</u>					-
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	22	ە <i>ب</i> ەر		4 v.~	8	1 1	.5	8. s. 9		4 n/v						
ge River Pi	Toffol Phosty	2000 1.0	***	ॐ तं ऽ	ટુંસું હ	8 8		R	. 20 6 - 20		ាក់ សុខ	3.5		 :			
P. J. Ca	Phota Pho #8/	ਨ ਹ	-18.6	2,86,7	ş.ÿ. ₹	동안		189	1.0 .34		288.3 288.3	3			:		
Regressy Island	Chloride mg/1	82	3'8'8	325	130	170		140	170 120 6		130 150	m		-			
Gra	Cond.	1000	200	5 5 S	0000	1000		770	1000 030 6		980 1000 7	e	···				
:	plf S.U.	7-1	- K- 0	 	, O 0	8 8		8.0	4.5	· ;	8.0 8.7	m					
FWPCA, DPO	Thenols ug/l	ğν;	72.5	35	ا ا و ر	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6	17		12.0	ι α <u>.</u>		· ·		_	
	88/1	1. 11. 1	7.4.0		. 0.00 N. V.	8.9		6.8	9.6 0.0		0 074 W NO	m 	*Estimated				
	Temp		70.0	10.0	, o u	0 0	: : :	0.5	0.0 0.0 0.0 0.0	eakage	10.0	m 	*Estime				
	Time	001 001 001 001	1503	1045	111	0050	r Pipe	Ave.	Max. Min.	Overflow Pipe Leakinge	Aye. Max. Min.	ප්		_		-	•
		10-3	10-25	1-1	11-15	11-13 12-13 13-13	Overflow Pipe			Overflo				-			
		3	333	200	<u>@</u>	<u> </u>	3		83	(5)							

The many that is a supply to the state of

()

(cont.)				
Table 9				
2.0	<u>.</u>			
1961 A	Pcal (2011.	5 5 5 5 5 8 5 5 4 6	70 70 9	730 32 32 32
Pilot Study	Total Coli.	872,000 1,100 1,100 1,100 1,100 1,100 1,900 2,000 2,000	1,800 3,100 570 6	5,100 7,900 850 850 3
River Pi	Vol. Sus Solids Sulfate mg/l mg/l-	건복생%생약군	# X X M	in in in in in in in in in in in in in i
Rowce	Vol. Sus Solido	8 5 7 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	129 66 66	1 +0.⇒ m
Rouge Grassy Island	Susn. Solids	82 4 4 4 4 4 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6	స్ట్రజ్ఞు	జ్ఞ జ్ఞ జ్ఞ ^జ
ð	Dies Total Salids Vol. Sol	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	230 230 140 6	951 951 951
	Diss Salids Pg/1	66 88 61 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	590 660 540 540	98.98 98.98 9.09 8.09 8.09 8.09 8.09 8.0
	Total tySalids	55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	640 710 570	640 670 790 3
	nikalimi mg/1	8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	255 256 176 6	E 0 0 m
	Turb J.C.U.	Mになせてが。	\$2 52 33	48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
PAPCA, 180	Peni	1000 1000 1000 1000 1000 1000 1000 100	10.5	4.5.10.0 10.0 3.3
MAC	7. me	10.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1 5 1 1	THE RESERVE THE PARTY OF THE PA
		24555544444 2555844444444444444444444444	Ave. Nex. Min. Min. M.S.	Overndy Pipe. Min. II.S.
				@

Sugar Marie Land of Start

Observations

The extent of the filled area inside the dike, as determined by a survey conducted on September 6, is shown in Figure 7. By September 11, the sludge had extended to the dikes on all sides and the depth of the material accumulated inside the dike began to show a noticeable increase. A Belfort recorder was installed within the diked area to record these changes in water level as the dredging progressed. Similar recorders were installed in the Detroit River, at well #3, and at well #5. The Belfort records along with weekly observations and measurements performed by the field crew are presented in Figure 8 . On October 2, 3, and 4 the field crew reported overflow of the dike on the north and east sides of the island. Samples of the overflows were collected on October 3 near wells 6 and 7. On October 6, the overflow pipe was opened and an estimated 13 million gallons of supernatent drained into the Detroit River during a 48-hour period. The overflow pipe was also opened on two other occasions as previously discussed (October 25 and November 27). Even when the overflow pipe was sealed with a metal plate, leakage (estimated at less than .1 cfs) was observed.

C. Past Records

Data collected by various agencies at DT 14.6W between 1963 and 1967 were divided into two groups: dredging and non-dredging periods. The average temperature, phenol and chloride concentrations and median colliform densities measured at five stations on DT 14.6W are shown for dredging and non-dredging periods since 1963. (See Table 10)

Analytical statistical results* during the 1963 non-dredging period for stations R139 and R142 (on Detroit River range DT 19.0) and T15 (on the Rouge River) are given in Table 11. Phenol and chloride concentrations for 1963 appear higher than 1967 Pilot Study results while coliform densities are lower.

*Detroit River Lake Erie Project, U.S. Public Health Service

Table 10 Statistics of Water Quality FWPCA, DPO Dredging & Non-Dredging Periods
Detroit River

Range: DT14.6W Station: R36 (400' from U.S. Shore)

		Temp C_	Phenols ug/l	C1. mg/1	Total Coliform* MF/100 ml
1963 Dredging Period	Ave. Max. Min. N.S.	12.2 20.5 3.0	6 8 4 3	19 20 19 3	3100 3200 600 3
1963 Non- Dredging Period	Ave. Max. Min. N.S.	13.6 26.0 6.0 14	8 23 1 6	21 32 15 8	2750 520,000 560 14
1964 Dredging Period	Ave. Max. Min. N.S.	15.0 18.0 12.0 2	9 14 3 2	-	31,100 60,000 2200 2
1964 Non- Dredging Period	Ave. Max. Min. N.S.	22.8 25.5 19.5 6	4 7 0 6	: : :	97,500 290,000 1000 6
1965 Dredging Period	Ave. Max. Min. N.S.	- - -	7 7 6 2	15 16 14 2	4,000 6,700 1,300 2
1965 Non- Dredging Period	Ave. Max. Min. N.S.	13.1 18.0 7.0 4	. 3 6 0 7	14 14 14 1	4,750 120,000 300 8
1966 Dredging Period	Ave. Max. Min. N.S.	12.2 15.0 8.0 3	4 11 0 3	20 23 15 3	1,600 2,500 900 3
1966 Non- Dredging Period	Ave. Max. Min. N.S.	18.1 24.0 9.0 7	6 11 0 6	22 44 14 7	3,300 5,500 < 300 7
1967 Dredging Period	Ave. Max. Min. N.S.	12.2 15.0 9.5 2	7 10 4 2	19 23 14 2	15,000 22,000 7,400 2
1967 Non- Dredging Period	Ave. Max. Min. N.S.	15.0 22.0 9.0 5	8 18 < 1 6	16 19 12 6	13,000 120,000 3,300 6

*Median (not average) shown for bacteriological data

Table 10 (cont.)
Statistics of Water Quality
Dredging & Non-Dredging Periods
Detroit River

Range: DT14.6W

FWPCA, DPO

Station: R38 (800' from U.S. Shore)

		T em p	Phenols ug/l	Cl. mg/l	Total Coliform* MF/100 ml
1963 Dredging Period	Ave. Max. Min. N.S.	12.2 20.5 3.0 3	3 6 1 3	12 13 11 3	2800 4500 500 3
1963 Non- Dredging Period	Ave. Max. Min. N.S.	13.3 26.0 5.5 13	6 16 0 6	15 17 10 9	2000 440,000 200 13
1964 Dredging Period	Ave. Max. Min. N.S.	15.3 18.0 12.5 2	14 8 0 2	-	12,950 25,000 900 2
1964 Non- Dredging Period	Ave. Max. Min. N.S.	22.6 25.5 19.0 6	ц 9 0 6	- - -	47,500 290,000 3,000 6
1965 Dredging Period	Ave. Max. Min. N.S.	- - -	5 5 5 2	13 13 12 2	24,500 48,000 1,000 2
1965 Non- Dredging Period	Ave. Max. Min. N.S.	12.8 18.0 6.0 4	. 3 4 0 7	13 13 13	3,950 59,000 1,200 8
1966 Dredging Period	Ave. Max. Min. N.S.	12.2 15.0 8.0	2 5 0 3	14 15 13 3	1,400 1,400 400 3
1966 Non- Dredging Period	Ave. Max. Min. N.S.	18.0 24.0 9.0 7	6 9 0 7	15 23 12 7	1,000 9,300 < 300 7
1967 Dredging Period	Ave. Max. Min. N.S.	12.5 15.5 9.5 2	6 10 2 2	15 18 12 2	13,000 18,000 7,100 2
1967 Non- Dredging Period	Ave. Max. Min. N.S.	15.0 .22.0 . 9.0 . 5	9 19 1 5	14 15 12 6	4,600 140,000 2,000 6

*median (not average) values shown for bacteriological data

Table 10 (cont.)
Statistics of Water Quality
Dredging & Non-Dredging Periods
Detact River FWPCA, DPO

Range: D.1-.6W Station: R40 (1000' from U.S. Shore)

		CC	Phenols ug/l	Cl. mg/l	Total Coliform* MF/100 ml
1963 Dredging Period	Ave. Mex. Min. N.S.	12.3 21.0 3.0 3	8 1 3	12 18 9	1800 2200 1100 3
1963 Non- Dredging Period	Ave. Max. Min. N.S.	13.2 26.0 5.5 13	4 11 1 5	19 54 12 9	1100 380,000 160 13
1964 Dredging Period	Ave. Max. Min. N.S.	15.0 17.5 12.5 2	5 5 4 2	-	9,850 19,000 700 2
1964 Non- Dredging Period	Ave. Max. Min. N.S.	22.5 25.5 19.0 6	3 5 0 6	• • •	43,500 260,000 1000 6
1%5 Dredging Period	Ave. Max. Min. N.S.	-	4 4 3 2	5 9 11	19,250 38,000 500 2
1965 Non- Dredging Period	Ave. Max. Min. N.S.	12.5 17.5 6.0 4	3 13 0 8	13 13 13 1	3,050 58,000 600 8
1966 Dredging Period	Ave. Max. Min. N.S.	12.0 15.0 7.5 3	2 4 0 3	13 14 12 3	400 1,200 200 3
1966 Non- Dredging Period	Ave. Max. Min. N.S.	17.9 24.0 8.5 7	5 9 0 7	14 20 12 7	1,400 4,300 360 7
1967 Dredging Period	Ave. Mex. Min. N.S.	12.5 15.5 9.5 2	6 9 3 2	13 14 12 2	7,400 8,200 6,700 2
1967 Non- Dredging Period	Ave. Max. Min. N.S.	15.0 22.0 9.0 5	7 14 < 1 6	13 15 8 6	3,700 < 150,000 250 6

*Median (not average) values shown for bacteriological data

Table 10 (cont.)
Statistics of Water Quality
Dredging & Non-Dredging Periods FWPCA, DPO Detroit River

DT14.6W Range:

Station: R42 (2000' from U.S. Shore)

		CCC	Phenols ug/l	Cl.	Total Coliform* _MF/100 ml
1963 Dredging	Ave.	12.0	2	9	1400
Period	Max. Min.	20. 5 3.0	3 1	10 8	1900
	N.S.	3	3	3	1400
1963	Ave.	12.8	. 2	19	1200
Non-	Max.	25.5	4	47	200,000
Dredging Period	Min. N.S.	5.0	0	10	80
1964	Ave.	13 14.8	5	8	13
Dredging	Max.	17.5	5 5 4	~	3,950
Period	Min.	12.0	4	-	. 7,600 300
	N.S.	5	5	-	2
1964	Ave.	22.4	3 7	-	58,000
Non- Dredging	Max. Min.	25.5 19.0	7	-	620,000
Period	N.S.	19.0	6	-	2,000
1965	Ave.	_		-	0
Dredging	Max.	•	·3 3 3 2	9 10	21,750 43, 00 0
Period	Min. N.S.	•	3	8	500
3000		-		2 .	2
19€5 Non-	Ave. Max.	12.4	. 3 7	12	2,250
Dredging	Min.	17.5 5.5	0	12 12	27,000
Period	N.S.	4	8	1	310 8
1966	Ave.	11.8	4	10	500
Dredging Period	Max. Min.	14.5	9 0	ii	1,100
101104	N.S.	7•5 3	0 3	9	500
1966	Ave.	17.5		3	3
Non-	Max.	23.5	3 9	12 17	900
Dredging	Min.	8.0	0	10	9,300 < 300
Period	N.S.	7	7	7	7
1967 Dredging	Ave. Max.	12.0	5	10	3,200
Period	Min.	15.0 9.0	2 2	11 10	3,900
	N.S.	2	2	2	2,400
1967	Ave.	14.7	7	n	1,600
Non-	Max.	22.0	13	14	> 150,000
Dredging Period	Min. N.S.	8.5	3 6	6	< 10
	4.0	5	0	6	6

*Median (not average) values shown for bacteriological data

Table 10 (cont.)
Statistics of Water Quality
Dredging & Non-Dredging Periods
Detroit River FWPCA, DPO

Range:

Station:

DT14.6W R44 (3000' from U.S. Shore)

		Temp	Phenols ug/l	Cl. mg/l	Total Coliform* MF/100 ml
1963 Dredging Period	Ave. Max. Min. N.S.	11.8 20.0 3.0 3	2 4 0 3	9 10 8 3	600 1300 420 3
1963 Non- Dredging Period	Ave. Max. Min. N.S.	12.5 25.5 4.5 13	2 6 0 5	13 33 7 9	420 50,000 10 13
1964 Dredging Period	Ave. Max. Min. N.S.	14.5 17.5 11.5 2	5 7 3 2	- - -	1,100 1,800 400 2
1964 Non- Dredging Period	Ave. Max. Min. N.S.	22.3 25.5 19.0 6	2 5 0 5	- - -	31,500 220,000 1,200 6
1965 Dredging Period	Ave. Max. Min. N.S.	- - -	3 3 2 2	9 9 9 2	1,850 3,400 300 2
1965 Non- Dredging Period	Ave. Max. Min. N.S.	12.0 17.5 5.0 4	3 8 0 8	n n 1	1,550 16,000 90 8
1966 Dredging Period	Ave. Max. Min. N.S.	11.7 14.5 7.5 3	0 1 0 3	9 10 9 3	200 300 200 3
1966 Non- Dredging Period	Ave. Max. Min. N.S.	17.4 23.5 8.0 7	2 9 0 7	12 18 9 7	500 4,300 < 300
1967 Dredging Period	Ave. Max. Min. N.S.	12.0 15.0 9.0 2	3 5 1 2	12 15 15	320 350 290 2
1%7 Non- Dredging Period	Ave. Max. Min. N.S.	14.3 22.0 8.5 5	12 < 1 6	10 12 5 6	960 93,000 200 6

*Median (not average) values shown for bacteriological data

()

Table 11 Water Quality Statistics 1963 Non-Dredging Period

R1 39				
	(°c)	Phenols (ug/l)	Chlorides (mg/l)	Total Coliform* (MF/100 ml)
Ave. Max. Min. Æ.S.	17.0 27.0 7.0 7	28 79 8 5	35 42 28 5	6,000 440,000 1,300 7
R142				
Ave. Max. Min. N.S.	16.5 28.0 6.0 7	18 28 0 5	27 35 12 5	7,000 750,000 400 7
<u>T-15</u>				
Ave. Max. Min. N.S.	13.0 21.0 5.0 16	42 160 0 10	40 69 10 8	7,500 140,000 600 16

^{*}Median (not average) for bacteriological data.

II. Conclusions

Dredging Operation

The dredging operation causes significant degradation of water quality in the immediate vicinity of the dredge as indicated by increases in concentrations of suspended solids, COD, BOD, total phosphate, volatile suspended solids, and iron. The concentration of these waste constituents generally decreased to substantially lower levels at a distance one half mile downstream from the dredging operation as shown in Figure 9. No pollutional effects of the dredging operation on the Detroit River were detected. Temperature, pH, conductivity, alkalinity, chlorides, phenols, total soluble phosphate, nitrates, nitrite, total coliform, fecal coliform, and dissolved solids did not show measurable increases in the Rouge or Detroit Rivers as a result of dredging the Rouge.

The analysis of the mid-depth samples do not show significant oil pollution. However, the visible film of an oil-solid mixture frequently stirred up behind the dredging operation was not collected as part of the depth samples. Oil films generated by the dredging operation were not of major significance on the Rouge and were not observed at all on the Detroit River.

The dissolved oxygen concentration in the dredging areas decreased with time while the stirred-up material was still suspended in the river. On the dissolved oxygen surveys on October 2 and November 9, decreases of 3 mg/l (in 50 minutes) and 3.5 mg/l (in 34 minutes) respectively, were observed as shown in Figure 6.

Station T18 at Fort St. was sampled during the entire pilot study.

Ford Motor Company discharges and the dredging operations are two of the

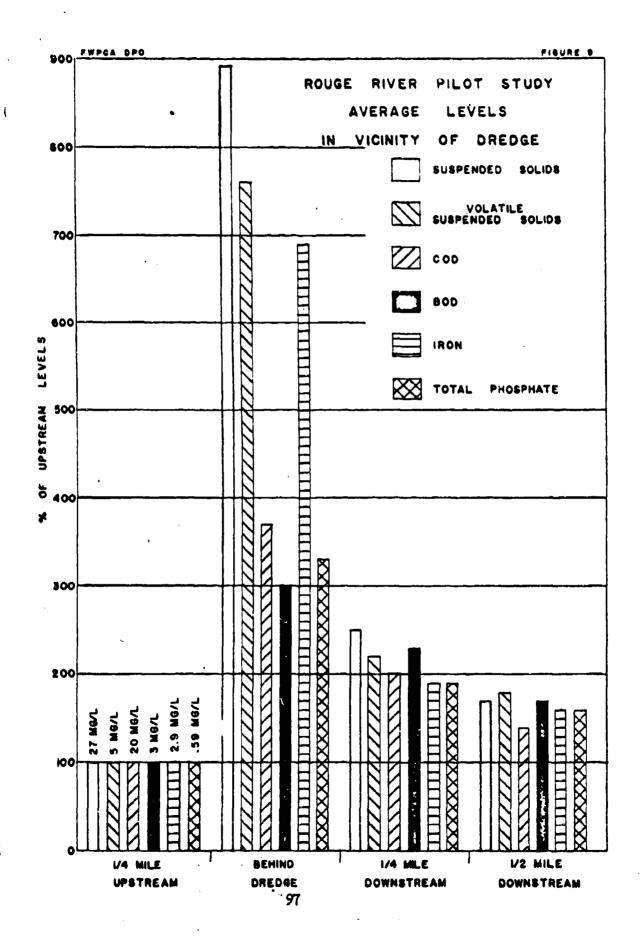
The Marie Con

major factors which affect the water quality at this point. Due to the Ford strike the influence of the discharge of this company was the least during the 60-day period commencing on September 8. Six samples were collected at Fort St. during this period. Three samples were collected with the dredging operation upstream and three with the dredging downstream from the bridge. The average of these three samples show only a small increase in certain parameters under the influence ? the dredging operation as shown in the following table:

Station T-18 Fort St. Bridge Average Values

Parameter (mg/1) (average of three values)	Dredging Operation Upstream from Fort St.	Dredging Operation Downstream from Fort St.
COD	24	26
BOD	4	3
Suspended solids	5 6	50
Volatile susp. solids	9	7
Total phosphates	.94	· n
Iron	5.6	4.0

The average solid content of the intake sludge was 38%. The detention of the material in the hoppers provided for 47% removal of the solid material from the sludge before overflow. The dredged sludge was homogenous and the solids contained in the intake and overflow sludge exhibited similar chemical characteristics. The following table lists the average concentrations of several constituents in the dry solid dredged material.


Intake & Overflow
Average Concentration*
 mg/kg Dry Basis
 (except as noted)

Volatile Solids (% Dry Basis)	18
Total Phosphate	8700
Total Soluble Phosphate	8
Nitrate	60
Nitrite	• ;
Ammonia	400
Iron	100
Oil & Greass	40,000
COD	260,000

Both the undisturbed and dredged sediments were found to be highly rolluted, exerting high oxygen demand and containing large concentrations of iron, oil and volatile solids. The highest concentrations of oil and iron were found in sediments collected from the Rouge upstream from its intersection with the Old Channel.

()

^{*}Excluding intake & overflow from the Old Channel

Dumping Grounds

Sampling st Stations R37, R41, and R43 downstream from Grassy Island showed no appreciable degradation of water quality during the dredging period. Examination of past data records for dredging and non-dredging periods also fail to show consistent changes in water quality.

The measurement of water levels inside the wells on Grassy Island indicate that the seepage rate through the dumping ground dikes is low. Well water levels were found remain near that elevation of the Detroit River. The rate of rise after sampling in water level in well #3 also indicate the low seepage rates typical of clayey subsoils. In the week following the end of the dumping operation, the water level in the pond subsided approximately 1 1/2 inches. At this rate the seepage flow from the island is estimated at less than .2 cfs.

The water collected from the wells was found to be grossly polluted. However, it is expected that many of the pollutional characteristics are imparted to the water by the surrounding soils and that the well water is not necessarily representative of water quality of a seepage flow.

The Grassy Island pond acts as a settling and stabilization basin.

Results of the analysis of the pond sample indicate a decrease in BOD, COD, total phosphate and suspended solids with time. The quality of the pond water are compared to effluent recommendations or requirements set down by the Public Health Service and the Michigan Water Resources Commission for certain industries and municipalities in the Detroit area. (See Table 12)

The concentration of these constituents are comparable to the levels required for other discharges to the Detroit River.

()

Table 12
Water Quality
FWPCA, DFO Grassy Island Pond

Parameter	Recommendations or Requirements	Pond Average (4)	Overflow Average (4)
Suspended Solids (mg/1)	50 (1)	47	52
Total Coliform (org/100	ml) note (3)	12,000	1800
Fecal Coliform (org/100	ml) note (3)	470	17
0il (mg/l)	15 (1) (2)	6	3
Phenol (ug/1)	20 (2)	13	9
BOD (5-day) (mg/1)	20 (2)	18	10
pH (standard units) 5	.8 - 10.5(1)	7.7	8.0
Iron (mg/l)	17 (1) (2)	3.8	2.4

- (1) Michigan Water Resources Commission stipulation for certain effluents.
- (2) U.S. Public Health Service recommendation for certain effluents.
- (3) Proposed water quality standard:

 Total body contact: The average of any series of 10 consecutive samples shall not exceed 1000 organisms/100 ml nor shall 20% of the samples exceed 5000. The average fecal coliform density for the same 10 consecutive samples shall not exceed 100. This standard applies to the Detroit River except at

the mouths of tributaries, and in the immediate vicinity of

enclosed harbor areas and waste treatment plant outfalls. (4) Median for coliform.

III. APPENDIX

Laboratory Procedure

Bottom sediment samples were analyzed according to the Chicago Program Office (FWPCA) procedures and Standard Methods for the Examination of Water and Wastewater, 12th Edition, 1965.

Parameters not run according to the Chicago Program Office procedures are: TDOD, BOD, NO₂, NH₃-N and Organic-Nitrogen. However, the first three of these parameters were run according to "Standard Methods" with modifications and the NH₃-N and Organic-Nitrogen analyses were run according to published procedures.

The following is a condensed procedure for each of these parameters which were run by the Detroit Program Office, FWPCA. Chicago procedures are not listed.

A limited number of precision tests were run on all parameters except BOD, to provide a base for the number of significant figures to which each test is reported.

Immediate Dissolved Oxygen Demand (IDOD) and BOD (5-day) Determinations
Using a Dissolved Oxygen Analyzer (D.O. probe)

 $(\)$

- 1. Prepare dilution water at 20°C and measure its oxygen content.
- 2. Weigh 5-10 grams of sample and siphon in dilution water to fill the BOD bottle.
- 3. Let stand exactly 15 minutes.
- 4. Measure oxygen content and report as IDOD based on 10 or 5 grams at 20°C.
- 5. In addition to the 5-10 gram sample prepare dilutions containing 1 gram and .5 gram of sample. Determine dissolved oxygen content after 15 minutes.

Use the 15 minute oxygen concentrations as initial oxygne content for BOD.

6. Measure oxygen content after five days incubation at 20°C.

Nitrite - Nitrogen (Manual Determination)

- Weigh 5 grams of sample into 150 ml beaker. Add 50 ml nitriet-free water, and let stand overnight.
- 2. Filter through membrane filter and analyze according to "Standard Methods."

Determination of Ammonia and Organic Nitrogen following Phenol Analysis
Using Cupric Sulfate as Catalyst

Ammonia - Nitrogen (Manual Determination)

- Place 10 grams of sample into a 1000 ml distilling flask. Add 550 ml phenol-free distilled water and 10 ml of 10% Cu-SO_h-H₂PO_h solution.
- 2. Distill over phenol.
- To the residue in flask, add 5 ml of NAOH (250 g/liter), a few glass beads, and enough water to make 250 ml approximately.
- 4. Distill over NH₃ in bottles. (Boric Acid is used only for extremely high concentrations).
- 5. Measure the volume and save for nesslerization.

Organic Nitrogen

- 1. Add 10-50 ml K₂SO₄-H₂SO₄ solution to the residue from ammonia determination; digest until fumes are acid to litmus paper.
- 2. Cool; add distilled water to volume of about 250 ml.
- 3. Add 50% solution of NaOH containing thiosulfate, the volume of which is equal to the amount of K2SO, -H2SO4 added in Step 1.

- 4. Distill over NH_3 into bottle. Measure volume and save for ness-lerization.
- 5. Nesslerize NH_3 and organic samples according to "Standard Methods."

Rouge River Mater Quality - Ford Motor Company

The 61.day Ford Motor Company strike commenced on September 7.

During this period of pollutants by that company were expected to be lower than usual. Samples were collected to determine water quality during the strike period. The results are shown in Table and the averages are shown below

Average Values Station T-19

		Phenol ug/l	011 <u>Mg/1</u>	Iron mg/l	Suspended Solids mg/l
Oct. 18 - Nov. 7	Ave.	16	3	3.8	34
	Max.	160*	5	9.0	79
	Min.	5	2	•7	12
	n.s.	12	13	15	14
Nov. 8 - Nov. 24 (except Nov. 16)	Ave.	14	· 3	6.2	34
	Max.	22	4	13	57
	Min.	10	2	3.0	15
	N.S.	9	10	10	10

The averages show little difference in phenol, oil and suspended solids concentration. However, the affect of Ford Motor Company on the Rouge River should not be underestimated for several reasons.

- 1. The activities within the Rouge Plant during the official strike period are not known.
- 2. The pollution caused by stormwater overflow may have masked the effects of Ford.
- 3. Surface oil is not reflected in depth sample concentration.
- 4. The Rouge water quality appeared improved during the UAW strike period.
- 5. Routine freighter activity causes polluted condition as shown by the sample collected on November 16, 1967.

The iron concentration does show a 60% decrease during the strike period. *Not included in average

The levels of all these contaminants during this period will be compared to similar measurements made in the future.

 \bigcirc

Table 13 Rouge River Station 119 Dix Ave. Bridge IWPCA, DFO Mid-Depth Samples

Date	OC.	Phenolug/1	011 mg/1	Iron mg/l	Suspended Sol. mg/l
10-18 S	15.0	12	14	2.6	79
10-19	12.0	18	4	2.6	-
10-20	12.5	18	3	1.7	26
10-23	12.0	5	2	•7	13
10-24	12.0	160	[.] 3	.8	12
10-25	12.5	29	32333333535434	.7	1 6
10-26	12.0	16	3	1.6	17
10-27 S	12.0	14	3	7.6	29
10-30	11.5	8	3	9.0	45
10-31	14.0	18	3	4.8	29
11-1 S	15.0	-	3	5.0	34
11-2	13.5	24	5	4.4	57
11-3 S	14.0	-	3	7-3	47
17 - 6	10.0	10	5	3.8	30
11-7#	11.5	- ,	<u>4</u>	4.9	37
11-8	12.0	-	3	3.0	25
11-9	12.0	20		3.2	15
11-13 S	11.0	13	2	6.2	37
11-14	12.0	10	3	6.8	23
11-15	11.0	11	2	6.2	28
11-16*	11.0	10	14	46	9) t
11-17 S	10.5	10	3	7.5	31 44
11-50	7•5	17	3	5.6	
11-2	11.0	22	2 3 2 1 3 3 2 1	4.9	32
11-22	10.0	-	2	13	57
11-24	7.0	17	1	5.4	49

[#]Passing freighter stirred bottom material
S - Data may reflect stormwater overflows on October 15, 16, 17 and 27
and November 1, 3, 11, 17.
#Strike officially ended on November 7, 1967

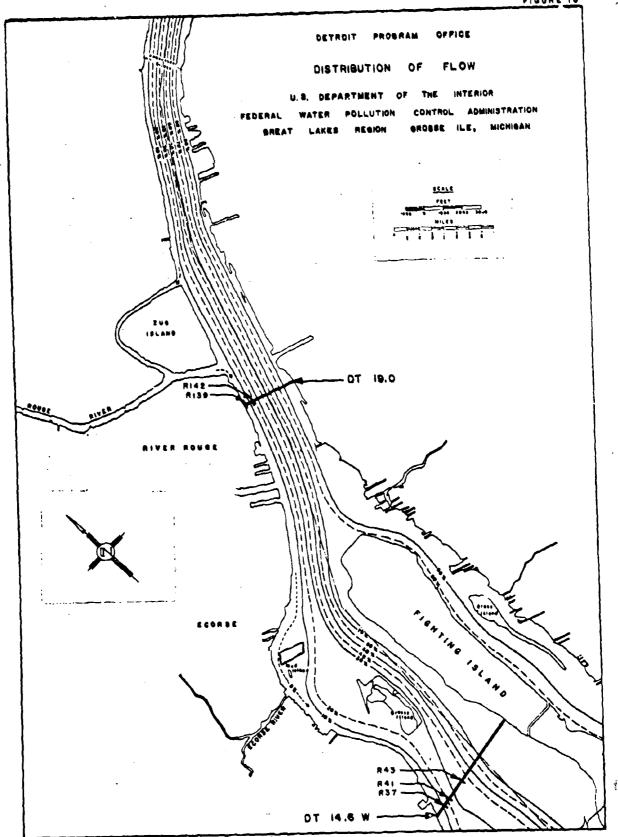
Flow Records - Detroit and Rouge Rivers

The flow pattern of the Detroit River, which has an estimated average discharge of 178,000 cfs, is shown in Figure 10. Variations in flow during the study were not determined. However, an above-average discharge was maintained during the dredging period as shown in the following table.

Detroit River Average Flow (cfs)
198,000
196,000
194,000
196,000

A portion of the Detroit River flow, estimated at 2800 cfs, is diverted into the upstream end of the Old Channel of the Rouge and returns to the Detroit River by way of the Short - cut Canal. The Short - Cut Canal is an artificial connection from the Detroit River to the natural bend in the Rouge River which eliminates and "S" shaped curve near the mouth.

Discharge measurements are taken by the U.S. Geological Survey at the Lower, Middle and Upper Rouge. The summation of the average discharges of record from these three gages shows an average flow of the Rouge River above the influence of Detroit River backwater of approximately 216 cfs. However, the flow during the autumn months are somewhat lower as indicated in the following table.


	Average Flow (cfs)
August	64
September	59
October	86
November	120

The flow records for the Rouge River during the 1967 dredging period are not available at this time. However, the streamflow in the Southeastern Michigan basin was in the normal range during the study.

Variations in effluent flow from the Ford Motor Company can cause major changes in the flow in the dredging area. This company discharges an average of more than 600 cfs, of waste and cooling water ten times the average natural September basin yield.

In summary, the flow entering the Detroit River from the Rouge River Short - Cut Channel is effectively the sum of the Rouge River natural yield (average = 216 cfs), the Ford Motor Company discharge (average = 600 cfs), and the Old Channel flow (average = 2800 cfs).

The state of the s

Attached is a list of lab numbers as used in the Rouge River Pilot Study report.

loca finna again i

PARABERER: Lab. No.

											,
Detroft R. R142	34552	ı	36524	31522	38528	टम ं ००म	41522	42558	144505	45530	•
Detroft R. RL39	34551	,	36523	37521	38527	40541	41521	4255T	10511	145537	
Fouge R. 715 (HP 1.09)	34554	•	36525	37526	38526	10543	12521	42552	•	45531	
Rouge R. T18 (MP 2.19)	34553	1	36526	37527	38525	174 50 1	41528	42553	•	45532	
1/2 Mile Downstream	-	35502	3653E	37525	38522	94504	41524	42556	1	45535	
1/h Hile Pomstrem	ı	35501	36529	37524	385.T	57507	41523	42555	44 502	45533	
schind Dredge	•	35500	ı	37523	38523	24504	41526	42560	10544	45536	
1/4 Nue Upstream		•	36527	,	38524		41525	42554	44500	45534	
Oredge Loc. (mile points)	None	2.67 to 2.94	2.55 to 2.94	2.40 to 3.00	1.93 to 2.63	1.87 to 2.69	1.50 to 2.17	1.45 to 2.17	Old Channel	0.37 to 1.46	
Date	3-24	S-31	2-6	*11-6	*IZ-6	10-5*	10-12*	10-19%	10-29	11-3%	· · · · · · · · · · · · · · · · · ·
~											The state of the s

APPENDIX A

REPORT ON

THE EFFECTS OF DISPOSAL OF DREDGING
SPOIL FROM INDIANA HARBOR CANAL INTO THE
INLAND STEEL COMPANY'S LANDFILL LACOON

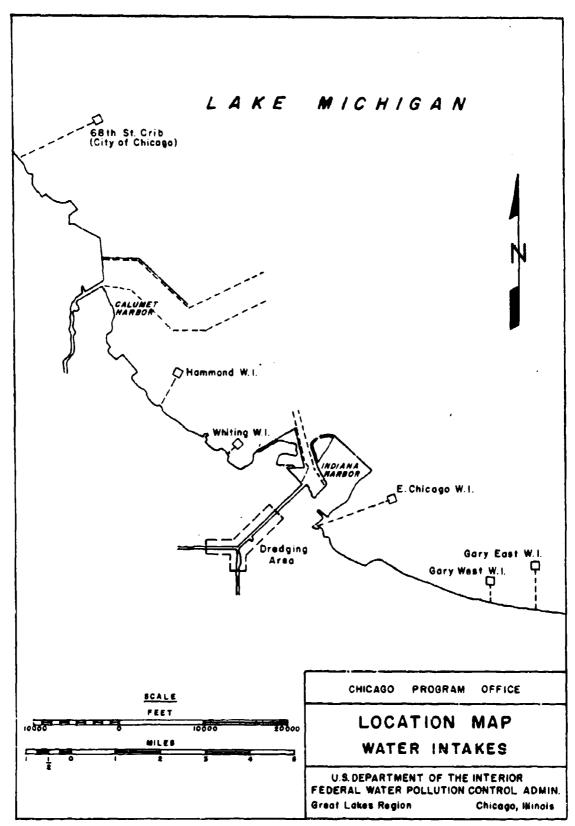
NOVEMBER 1967

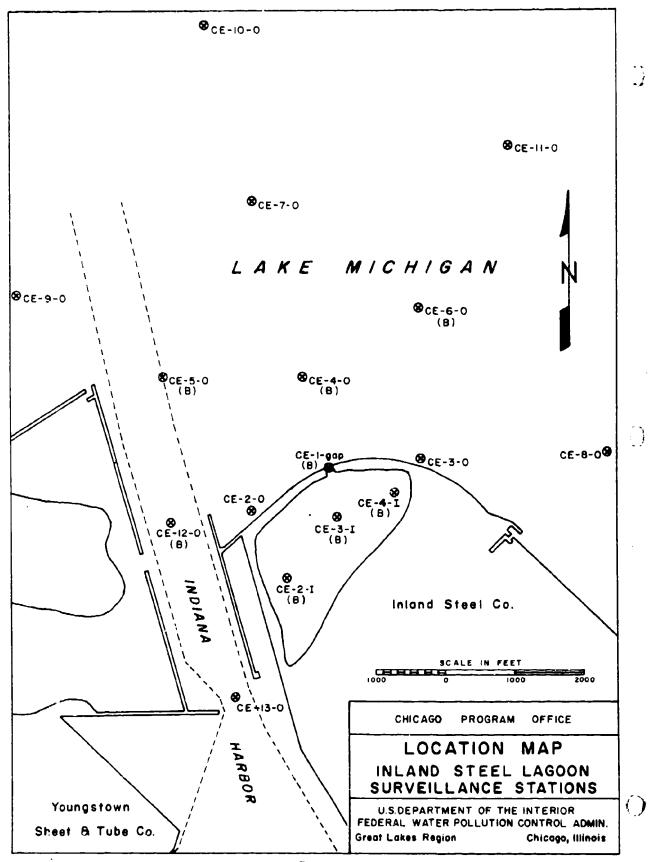
Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office

TABLE OF CONTENTS

			Page
Table of Contents			1
Introduction			2
Conclusions			3
Location Map - Water Intakes			4
Location Map - Surveillance Stations			5
Chronology of Events			6
Discussion of Results			
Bottom Sediments			9
Table 1 - Field Observations of Bottom Samples			10
Water Quality			11
Table 2 - Average Chemical Results - All Stations			14
Figure 1 - Distribution of pH	in	Water	15
" 2 - " Nitrite-Nitrate Nitrogen	**	••	16
3 - Ammonia Nitrogen	1)	"	17
4 - Organic Nitrogen	"	11	18
5 - Soluble Phosphorus		,,	19
6 - Total Phosphorus		"	20
\ - Dissolved Solids	"	"	21
" 8 - " Suspended Solids		"	22
" 9 - " " Oil and Grease	11	"	23
" 10 - " " Turbidity	"	**	24
Table 3 - Chemicial Results Inside Lagoon			25
" 4 - " " CE 1-gap			26
" 5 - " " CE 2-0			27
" 6 - " " CE 3-0			2 8
" 7 - " " CE 4-0			29
" 8 - " " CE 5-0			30
" 9 - " " CE 6-0			
" 10 - " " CE 7-0			32
" 11 - " " Œ 8-0			33
" 12 - " " CE 9-0			34
" 13 - " " CE 10-0			31 32 33 34 35 36
" 14 - "			36
" 15 - " " CE 12-0			37
" 16 - " " CE 13-0			38
Appendix A - Analysis of Bottom Samples			3 9

INTRODUCTION


The United States Army Corps of Engineers received permission from the State of Indiana and Inland Steel Company to dispose of dredging spoil from the Indiana Harbor Canal in Inland Steel Company's landfill lagoon during October 1967. At the request of the Corps of Engineers and the State of Indiana, the Federal Water Pollution Control Administration, Chicago Program Office, established a surveillance program in the area. This program was carried out with the cooperation of the Corps of Engineers which made the tugboat "Moore" available for sampling runs and assisted in every way. The purpose of the surveillance was to determine the effect of pollution of Lake Michigan resulting from the disposal of the spoil into the lagoon.


The 82 acre lagoon is formed by a concrete filled sheet steel coffer dam which has been backfilled to a distance of 50 to 100 feet with slag (see map, page 5). The coffer dam and slag fill is impervious except for a 150 foot wide gap which opens to Lake Michigan. The depth in the gap was dredged to 12-14 feet in order to bring the loaded barges into the lagoon. It was feared that pollution would escape through this gap and be carried to one of the five public water intakes which are located in the vicinity (see map, page 4).

CONCLUSIONS

- 1. No heavy materials escaped from the lagoon to contaminate the bottom of the lake.
- 2. Water quality within 1/4 mile of the gap was noticeably affected but, at more distant points, contamination from the lagoon was negligible compared with contamination from Indiana Harbor.
- 3. The lagoon was filled with less than 1 foot of material and the bottom is still 6-7 feet below the level of the sill. The lagoon can be used for spoil disposal at the rate of 120,000 cu. yds. per year for several years. Surveillance should be maintained during the disposal operation to insure that severe pollution to the lake does not occur.
- 4. The bubbler system installed by the Corps of Engineers to prevent surface contamination was not effective because the amount of air was insufficient to create vertical currents when a south wind caused a strong surface current through the gap.

()

March Mary and william

CHRONOLOGY OF EVENTS

October 14, 1967 - The Inland Steel Company granted permission for the use of its existing landfill lagoon as a disposal site for spoil dredged from the Indiana Harbor Canal.

October 26, 1967 - The Indiana Stream Pollution Control Board objected to the use of the lagoon on the grounds that contaminated materials escaping from the lagoon might endanger public water supplies located within a few miles of the lagoon (see map, page 4).

November 2, 1967 - The Indiana Stream Pollution Control Board withdrew its objection upon being assured that the Federal Water Pollution Control Administration would monitor the area to detect pollution escaping from the lagoon and that the Corps of Engineers would take appropriate action to prevent such pollution.

November 6, 1967 - The first barge loads of spoil were dumped into the lagoon. Personnel of the Calumet Area Surveillance Unit of the Chicago Program Office collected six water samples, including one inside the lagoon, before the first barge was dumped. A sample was also collected in the discolored area caused by the dumping. Buoys were placed by the Corps of Engineers to mark the open water sampling stations.

November 7, 1967 - Fourteen stations were sampled for water quality and six for bottom mud, using the buoys placed by the Corps of Engineers. No unusual conditions were observed.

November 16, 1967 - Two employees of the Chicago Program Office rode one of the barges and collected water samples inside the gap, outside the gap and in the disposal area. Oil was observed leaving the lagoon. The wind was from the south.

November 20, 1967 - Daily observation of the lagoon by Chicago Program Office personnel was initiated. A barge was observed leaving the lagoon and causing a long wake of discolored water in the lake which extended to the Indiana Harbor channel. It was determined that the wake was due to the fact that the barges were required to stop in the lagoon during dumping, therefore there was no washing action on the hoppers. It was agreed that all barges were to make a full 360 degree circle around the lagoon after dumping to provide washing action inside the lagoon. No further discolored wakes were observed in the lake.

November 21, 1967 - All fourteen stations were sampled. Heavy oil was observed on the lagoon and a considerable slick extended from the gap out into the lake for more than a mile. There was no oil coming from Indiana Marbor. The wind was from the south and had been for several days.

November 22, 1967. Wind northwest. Oil was observed on lagoon but none on lake or harbor.

November 24 and 27, 1967 - Wind strong from the north. Lake too rough for barges. No spoil dumped.

November 28, 1967 - Sampling run attempted but lake too rough. Three stations were sampled. Wind was strong from west.

November 29, 1967 - Twelve stations were sampled for water quality and six for bottom muds. Wind was light from southeast. Oil observed on lagoon and harbor but little on lake. Corps of Engineers personnel began collecting water samples for turbidity analysis as barges entered and left the lagoon. Bottles were supplied by the Chicago Program Office for this purpose. The Corps of Engineers began operating a bubbler system across the gap with the purpose of preventing the flow of oil and pollution through the gap.

December 1, 1967 - Fourteen stations were sampled for water quality and six for bottom muds. Wind was strong from the south. The Corps of Engineers was working on the bubbler to increase its air capacity. Oil was observed on the lake for a distance of 1/2 mile from the gap.

December 5, 1967 - Fourteen stations were sampled for water quality and six for bottom muds. Wind was light from the south. The bubbler was operating but did not appear to be effective. The water was the same color on both sides of it. It was not strong enough to cause the rolling action necessary to keep the water from mixing.

December 12, 1967 - Fourteen stations were sampled for water quality and six for bottom muds. Wind was strong from the west. Oil was observed on the harbor and the lagoon but little on the lag.

December 13 and 14, 1967 - Winds strong from north, lake too rough for barges, no spoil discharged.

December 16, 1967 - Dredging completed, last barge dumped.

December 18, 1967 - The lagoon was inspected to determine if further operation of the bubbler was required. The bubbler was not operating due to a mechanical failure in the compressor. There was a plume of discolored water extending several hundred yards into the lake from the gap. The wind was moderate, from the south. It was decided to put the bubbler back in operation for three days or until the next period of prolonged northerly winds.

The state of the same of the

DISCUSSION OF RESULTS

Bottom Sediments

The results of the physical observations of the bottom sediments show that very little, if any, of the heavy organic matter escaped from the lagoon. Samples taken at Stations CE-4-0, CE-5-0, and CE-6-0 (see table 1 page 10) were predominantly clean sand or gravel. On December 5, 1967 some organic material was found at Stations CE-4-O and CE-5-O but there is reason to believe that this came from the harbor and not the lagoon. Samples taken at Station CE-12-0 show that there is considerable contamination of the bottom originating in Indiana Harbor. Six samples taken in the gap produced no organic material. The current through the gap keeps it scoured clean. On December 18, 1967, a rough measurement of this current was made by allowing a boat to drift through the gap. It drifted 50 yards in 2.5 minutes, or one foot per second. The wind was moderate, from the south. On December 12, 1967, the bottom immediately outside of the gap was examined by sampling 20, 50 and 100 yards from the gap. At 20 yards the bottom consisted of large rocks 15 feet deep, probably rubble from the construction of the breakwater. At 50 and 100 yards the bottom was clean sand about 24' deep with no evidence of contamination. All samples taken inside the lagoon consisted of heavily polluted black, oily material similar to that found in the dredge hopper.

Before the dumping began the lagoon was 23 to 25 feet deep. A total of 120,000 cubic yards of spoil was deposited in the lagoon, producing an average thickness of 0.9 feet.

120,000 cu.yd. X 27 cu.ft./cu.yd. =0.9 feet 43,560 sq.ft./acre X 82 acres

TABLE 1

INIAND STEEL LAGOON SURVEILLANCE Summary of Field Observations of Bottom Samples

```
11/7/67
          CE 1-0 gap 14' deep - black gravel, mostly slag, no odor, little
                                 evidence of organics
           CE 2-I
                      22' deep - black silt, slight oil odor
                      32' deep - 3 pieces of tan gravel, 2 dips
           CE 4-0
                      30' deep - sand, no odor
           CE 5-0
           CE 6-0
                      26' deep - sand, no odor
11/21/67
           CE 1-0 gap 13' deep - one large piece of slag, 2 dips
           CE 4-I
                      19' deep - black silt, very oily, petroleum odor
           CE 3-I
                      20' deep - black ooze, very oily, petroleum odor
           CE 4-0
                      30' deep - gravel, no odor
           CE 6-0
                      26' deep - sand, no odor
           CE 12-0
                      28' deep - sand, some silt, slight oil odor
11/29/67
                                                           (No field notes. Examined)
           CE 1-0 gap hard bottom, no sample, 3 dips
           CE 2-0
                                                           frozen samples and
                      and
           CE 4-0
                                                            questioned samplers.
                      sand
           CE 12-0
                      sandy black silt
12/1/67
           CE 1-0 gap 14' deep - hard bottom, no sample, 3 dips
           CE 3-I
                      19' deep - black ooze, oily petroleum odor
           CE 4-0
                      31' deep - sand and gravel, no odor
           CE 5-0
                      31' deep - sand, no odor
           CE 12-0
                      27' deep - black ooze, some sand, slight petroleum odor
12/5/67
           CE 1-0 gap 13' deep - hard bottom, no sample, 3 dips
           CE 4-I
                      20' deep -black ooze, very oily
           CE 4-0
                      30' deep - sand, black oily material, slight petroleum odor
           CE 5-0
                      30' deep - sand, some black material, no odor
           CE 6-0
                      25' deep - sand
                      26' deep - black silt, some sand, slight petroleum odor
           CE 12-0
                                14' deep - hard bottom, no sample, 3 dips
12/12/67 *CE 1-0 gap
                                14'-16' deep - large rocks, 3 dips
           Outside gap 20 yds
                                24' deep - sand, no odor
          *Outside gap 50 yds
                                23' deep - sand, no odor
           Outside gap 100 yds
          *CE 3+I
                                22' deep - black silt, very oily, petroleum odor
           CE 4-0
                                 30' deep - sand and gravel
           CE 5-0
                                 31' deep - sand and gravel, no odor
           CE 6-0
                                 24' deep - hard bottom, no sample, 3 dips
           CE 12-0
                                 28' deep - dark grey oily muck, some sand, pet-
                                            roleum odor
```

Soundings in the lagoon after the dumping showed a depth of 19-22 feet, confirming the calculation. The sill of the gap is 13-15 feet deep which means the present bottom of the lagoon is 6-7 feet below the sill. At the present rate of disposal (120,000 cu. yds per year) it would take approximately 8 years to fill the lagoon to the level of the sill. Therefore the lagoon can be used for spoil disposal for several years. Surveillance should be maintained during the disposal operations to detect any serious lake pollution that might result. Water Quality

The results of analysis of the water samples show that the disposal of spoil in the lagoon caused a local deterioration of water quality around the gap but did not cause a wide spread effect that could be detected at the water intakes. Figures 1 thru 10 on pages 15 thru 24 show that flow through the gap had a considerable effect on suspended solids, oil and grease, ammonia nitrogen, organic nitrogen, and total phosphorus; little effect on dissolved solids, dissolved phosphorus, turbidity and pH; and no effect at all on nitritenitrate nitrogen.

The nitrogen balance (high ammonia, high organic nitrogen and low nitrite-nitrate nitrogen) is to be expected in water freshly contaminated by organic material that has recently been in an anaerobic state.

The phosphorus and solids results indicate that the spoil is largely insoluble. Figures 5 thru 8 show that total phosphorus and suspended solids were affected far more than dissolved phosphorus and dissolved solids. This is to be expected from spoil taken from the bottom of a flowing stream.

On November 21 and December 1, 1967, considerable amounts of oil were

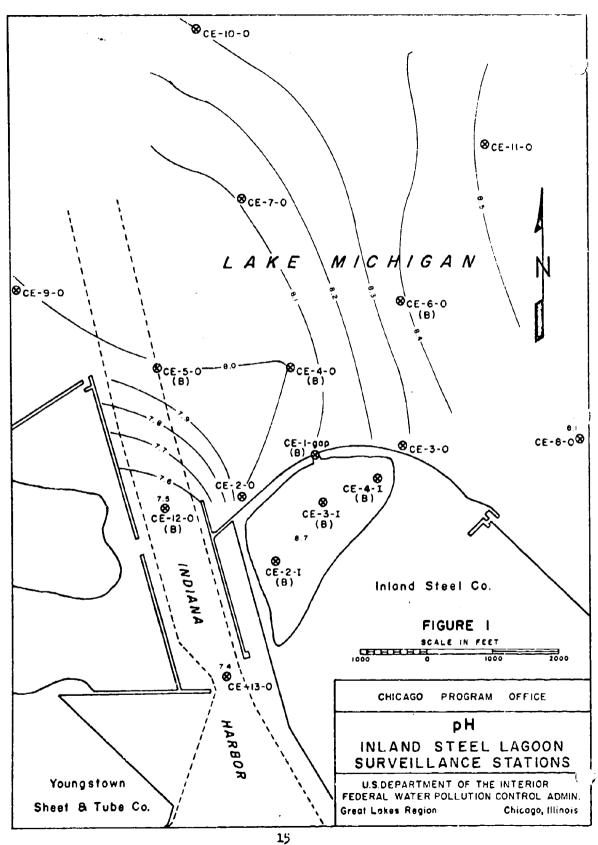
found on the lake coming from the gap. Figure 9 on page 23 shows that a considerable amount of oil and grease originated in the lagoon. This was expected due to the oily nature of the spoil.

The Corps of Engineers attempted to contain the floating oil by installing a perforated hose across the inside of the gap and pumping air through it. This created a curtain of rising air bubbles causing vertical currents which would keep the oil and polluted material inside the lagoon from crossing the curtain. It was not effective except on calm days. On several days, when a south wind was blowing oil was observed on both sides of the bubbler and there was no difference in the appearance of the water inside and outside of the bubbler. The volume of air was not sufficient to create the necessary vertical currents when the wind caused a horozontal current through the gap.

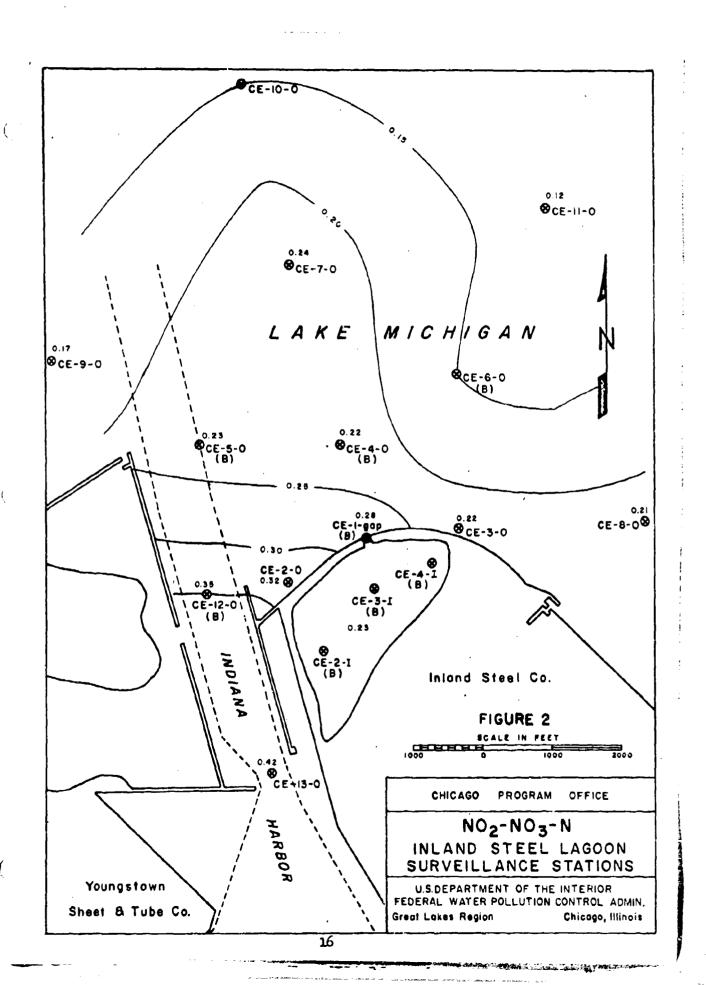
Figures 1 thru 10 are based on average figures for each parameter at each station (see Table 2 page 14). The infividual results for each station appear in Tables 3 thru 16 on pages 25 thru 38. These results indicate a slight increase in contamination with time but the trend is not statistically reliable.

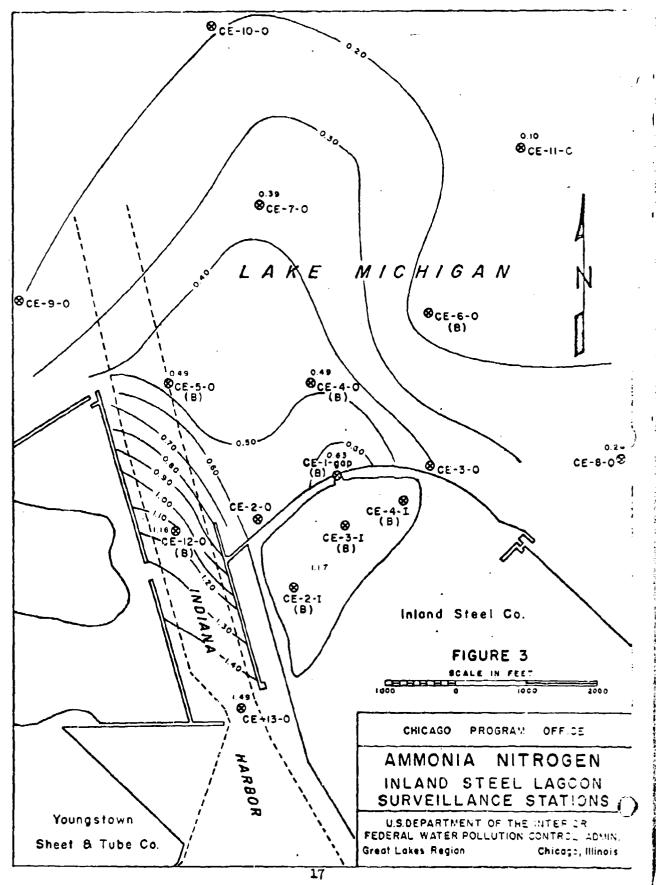
Wind direction has a great influence on local water quality at any particular time. South and east winds cause a discolored plume from Indiana Harbor which is evident beyond Station CE-10-0 but leaves the water around the gap clear. North and west winds cause the discoloration to blanket the area around the gap. Northerly winds tend to restrict and concentrate wastes from the harbor so that some of the highest concentrations were found during periods of north winds.

Table 2 shows that average concentrations of all parameters except turbidity and oil and grease were higher at the mouth of the harbor (Sta. CE-12-0) than at the gap (Sta.CE-1 gap). Since the flow from the harbor is much greater

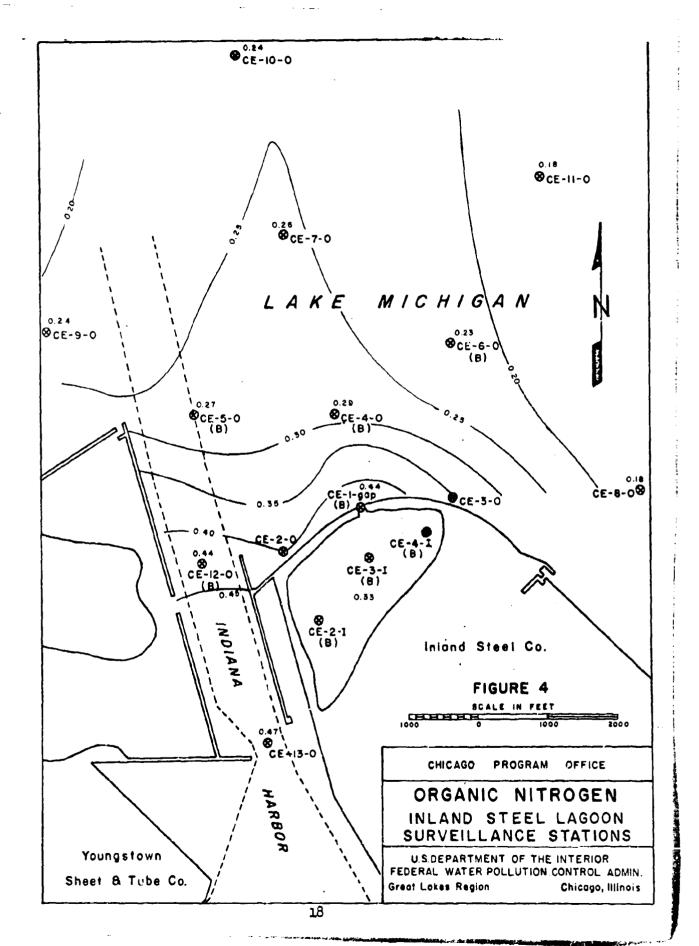

than the flow from the gap it is evident that far more contamination comes from the harbor than from the gap. Except for the area within 1/4 mile of the gap, the effect of contamination from the gap was negligible when compared with contamination from the harbor.

The results of the analyses of the bottom sediments also indicate that pollution from the gap was negligible when compared to pollution from the harbor. Appendix A shows that concentrations of COD, nitrogen, phosphorus, phenol, oil and grease, cyanide and sulphide were very low 50 yards outside of the gap when compared with material from the lagoon. Concentrations of iron, copper, zinc, lead and chromium 50 yards outside of the gap were all comparable to or higher than concentrations inside the lagoon. These concentrations were also very high at Station CE 12-0, which is at the mouth of the harbor. This indicates that most of the pollution 50 yards outside of the gap originated in the harbor and very little originated in the lagoon.

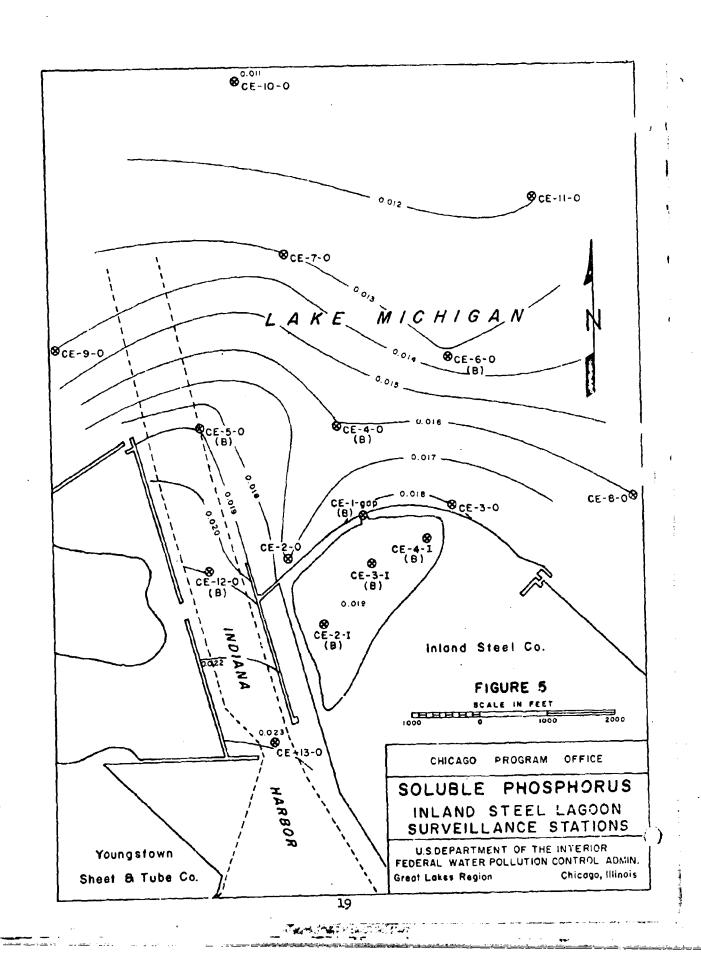

TABLE 2

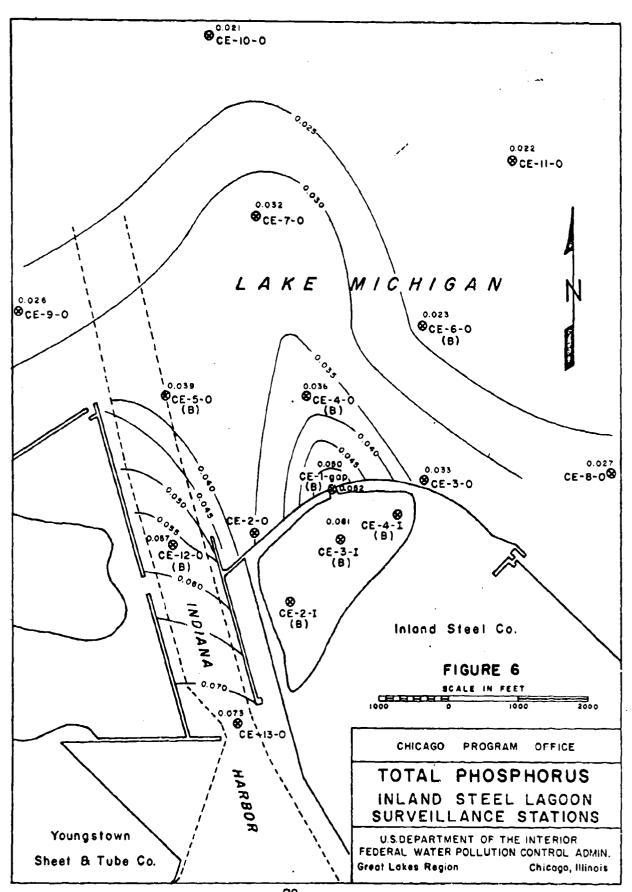

INTAND STEEL LAGOON SURVETLIANCE All Stations - Average Values

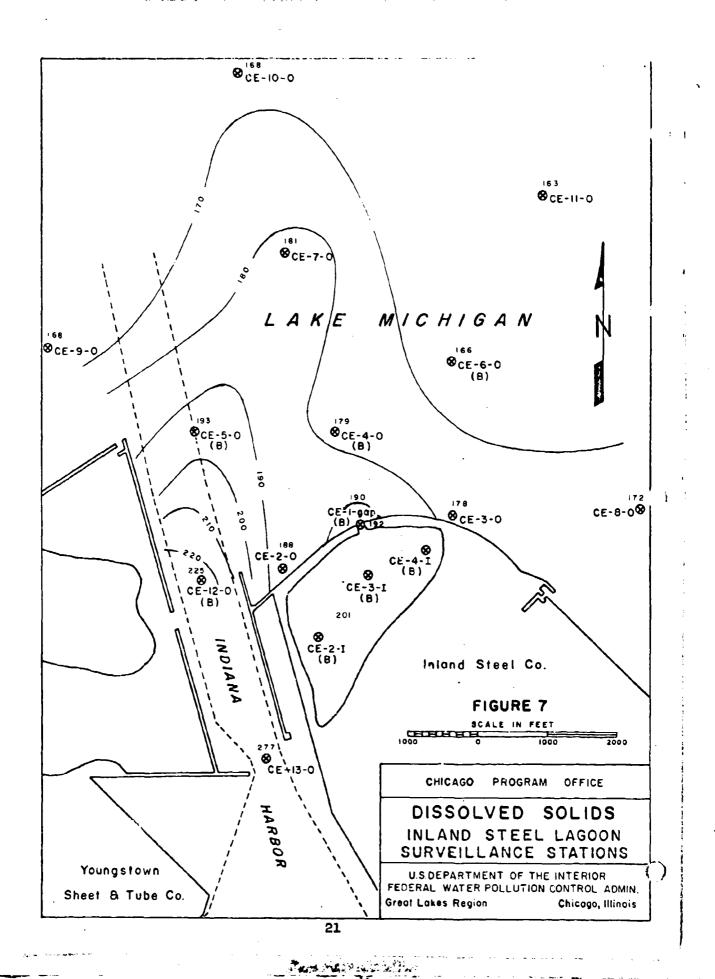
Station Oc 1-0 gap 5 2-0 6		NO2-NO3-	NH2-N	Org.N	Sol.P	Tot. P	COD	Dis. Solids	Susp. Solids	oil & grease	Turb.
de9	,	1/200 - 11	1/2m	1/20	17/2	1/2	mg/1	1/20	mg/1	mg/1	unite
	w.1	0.28	69.0	₽ ₩.0	0.018	0.0%	2.01	3%	15	9.0	†* 9
	8.0	o.3	0.50	0.40	0.017	0.035	11.2	188	า	9.0	5.4
	8.3	0.22	0.35	0.35	0.018	0.033	6.5	178	า	1.0	5.0
9 0-4	8.0	0.22	64.0	0.29	9.00	9.000	6.6	179	6	9.0	8.4
5-0 7	8.0	0.23	64.0	0.27	0.019	0.039	9.5	193	89	9.0	8.4
4 0-9	4.8	0.15	97.0	0.23	0.013	0.023	15.8	991	6	7.0	3.9
7-0 5	8.1	0.24	0.39	0.26	0.013	0.032	8.7	181	80	0.3	2.8
8-0 5	8.1	0.21	0.24	0.18	9.00	0.027	4.6	172	6	4.0	3.2
η 0-6	8.0	0.17	0.20	ф2°0	0.014	0.026	15.4	891	9	9.0	0.4
10-0T	8.3	0.15	0.20	0.27	0.01	0.021	10.01	891	-	0.2	3.1
17-0-TI	8.5	0.12	o.10	0.18	0.0 0	0.022	14.0	163	ជ	0.3	3.6
6 0-21	7.5	0.35	1.16	₩ .0	0.021	0.057	17.71	225	п	0.5	5.5
13-0	4.T	₽ .0	1.49	0.47	0.023	0.073	13.7	ъ	ជ	9.0	1.8
Inside 6 Legoon	8.7	0.23	1.17	0. 36	0.019	0.081	18.0	201	Q.	1.0	8.8

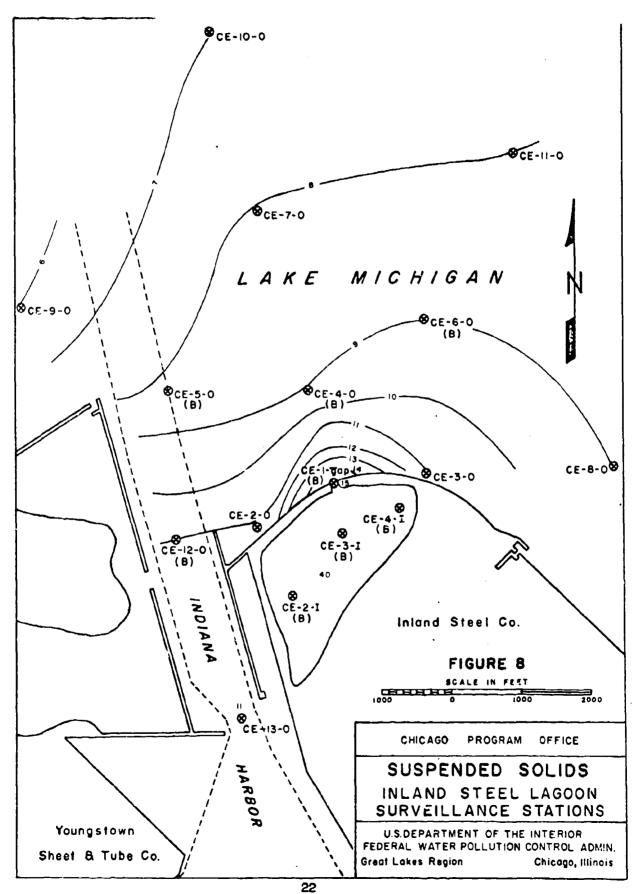


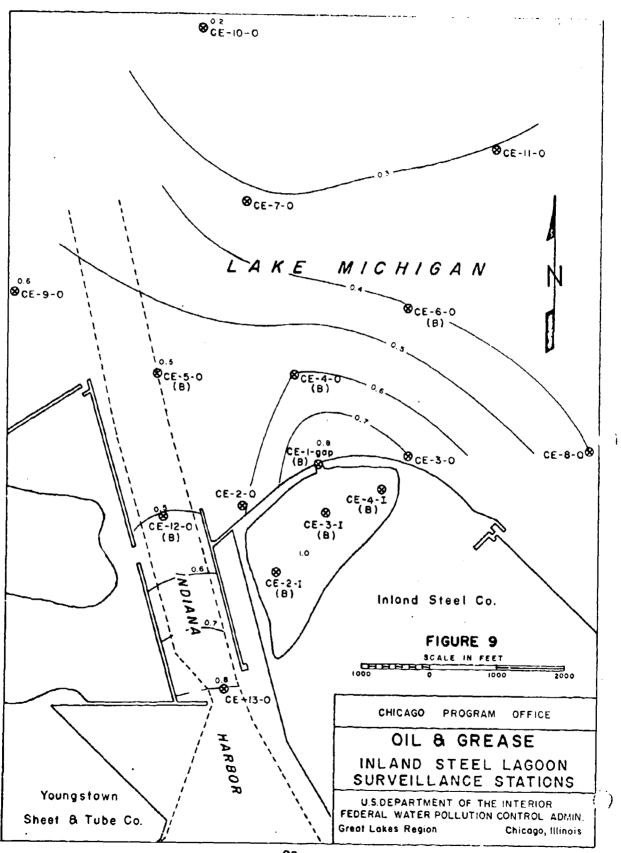
Entrace - Comment






March Market and Smither




Promother Production The

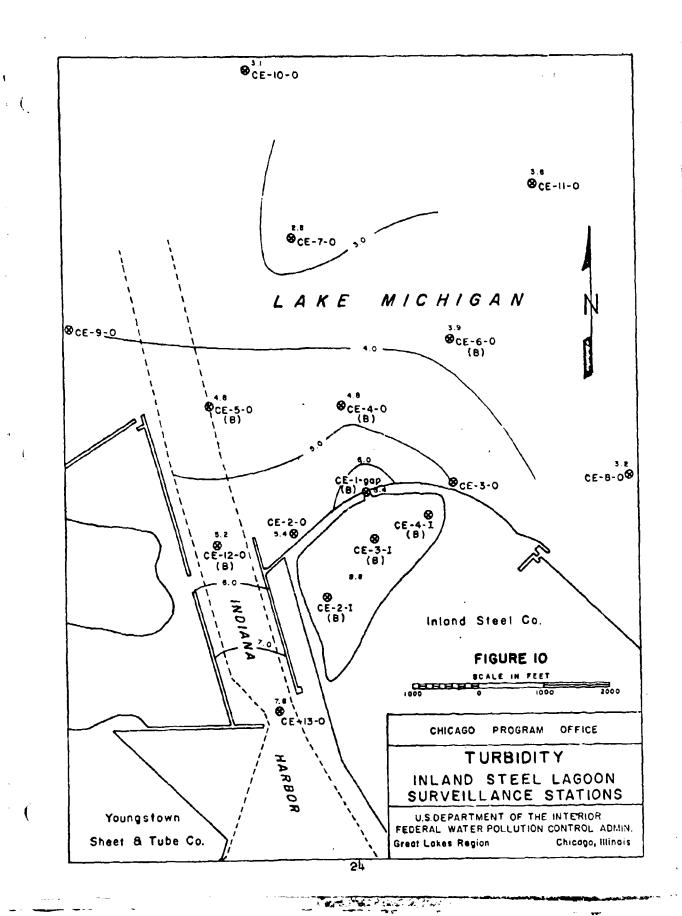


TABLE 3
INLAND STEEL LAGOON SURVEILLANCE
Stations 21, 31, 41 Inside Lagoon

	Remarks	aind west	water purple	wind north	wind south, heavy oil on surface, water murky grey	heavy oil on surface, water	4	wind west	wind south, oil	wind south, oil on surface, water murky	wind west, oil on surface, water murky
1	Turb.				4.8	5.6		0.6	13.5	8.0	4.8
011 &	grease mg/1	불	Ē	Ħ	0.3	2.3		•	È	불	5.0
Susp.	Solids mg/1	23	ま	25	87	ጹ		84	21	73	23
Dis.	Solida mg/l	461	800	न्य ट	22.1	193		23	218	190	193
	COD 11/2	7.2	ជ	8.9	8	9		15	‡	ង	4.8
	Tot.P mg/l	30.0	0.180	0.060	0.057	101.0		0.025	0.106	0.077	0.105
	Sol.P mg/1	0.010	0.014	0.021	0.014	0.024	•	0.011	0.023	0.0	0.032
	Org.N mg/l	0.30	0.27	0.16	9.P	8.0		09.0	0.27	0.75	0.63
	NH3-N	1.4	0.78	1.4	6.0	1.1		1.2	1.3	0.95	†. 1
	NO2-NO3- N - mg/1	0.26	0.27	0.16	0.10	0.23		0.27	0.27	0.22	0.28
	盟	9.1	4.8	4.8	8.3	9.0		8.6	8.6	8.9	8.6
	Temp.	1 1	- **					. 	4	<i>a</i>	5
	Date	11/6/67 (21)before* 7	(OT)after# 7	79/1/77	(21) 11/21/67 6 (31)	(41)after* 6	25	11/28/67 (41)	12/1/67 (31)	15/2/67 (41)	15/25/67 (31)

*before - Sample collected before dumping started after - Sample collected immediately after a barge was dumped

 $(\)$

TABLE 4

INLAND STEEL LAGOON SURVETLLANCE

Station CE 1-0 gap

Renarks	wind south,	wind north,	wind south, oil on surface	wind S.E., oil on surface	wind south, oil on surface bubbler opera-	wind south, of on surface, bubbler in	wind west, oil on surface, bubbler not
Turb.			3.2	5.9	0.6	7.0	6.0
011 & grease mg/1	Þ	0.1	0.3	4.0	1.6	8.0	2°.5
Susp. Solids mg/l	13	88	ន	08	Ħ	4 7	6
Dis. Solids mg/l	190	215	171	187	061	691	199
COD mg/1	2.5	1.3	21	ង	0.6	13	6.8
Tot.P mg/l	0.071	940.0	o.042	0.036	0.039	٥٠٥٥	0.060
Sol.P mg/l	0.014	0.018	0.015	0.017	0.020	0.021	0.023
Org.N mg/l	0.30	0.43	0.40	0.26	74.0	0.3 4	0.0
NH3-N mg/1	94.0	0,97	0.53	0.40	64.0	0.55	1.0
Temp. NO2-NO3- NH3-N Date OC pH N - mg/l mg/l	0.15	0.17	0.23	0.25	99.0	0.21	0.29
HZ.	8.7	7.9	7.7	7.2	4. 8	8.7	4.8
Temp OC	7		9	4	m	4	m
Date	19/9/11	11/61 8	9 <i>19/1</i> 2/11	11/29/67 4 %	3/1/67	t 19/5/21	६ ४९/दा/दा

TABLE 5

INLAND STEEL LAGOON SURVE LANCE Station CE 2-0

1	west, oil	th th	ıth	theast	ith	uth	wind west, water murky
	wind west, oil	on surface wind north	wind south	wind southeast	wind south	wind south	vind wes murky
Turb.	82100		2.0	7.7	6.2	7.4	3.9
Cil & grease	- N	0.5	Ą	9.0	0.5	4.0	1.9
Susp. Solids	15	य	ន	엄	ςı	8	6
Dis. Solids	177	205	173	195	190	175	200
200	5.1	2.6	2	炓	17	ង	3-9
Tot.P COD	0.036 5.1	0.043	0.028	0.024	9.036	0.035	0.046
Sol.P		0.021	0.014	0.009	0.018	0.016	0.021
Org.N	0.41	0.45	0.25	₹°0	64.0	0.38	₹ 1
NE3-N	0.33	0.65	ó.48	94.0	0.35	0.40	98.0
NO ₂ -NO ₃ -	8 7.7 0.22 0.33	0.27	0.26	0.25	99.0	0.20	0.35
ļ	7.7	•	1.7	8.2	8.1	8.3	4.9
Temp	8	ជ	9	4	3	4	-
	11/6/67 8	11/67 u - 0.27	1.7 6 75/12/11	11/29/67 4 8.2	६ ४५/१/टा	12/5/67 4 8.3	८ ७/३१/३१

27

TABLE 6

INTAND STEEL LAGOON SURVEILLANCE

Station CB 3-0

Remarka	, water	'tā	beast	ج	
Rema	wind west, water murky	wind north	wind southeast	wind south	vind west
Turb.			0.4	6.1	5.0
011 & grease mg/1		0.5	0.1	0.5	2.8
Susp. Solids	25	ង	5	9	80
Dis. Solids mg/l	891	205	171	165	185
COD 116/1	2.1	2.6	7.7	의	5.0
Tot.P	0.015 0.032 2.1	0.043	0.0	0.028	0.042
Org.N Sol.P		0.021	0.014	0.012	0.026
Org.N	0.37	0.45	0.22	0.28	₹ .0
NH3-N mg/1	0.20	0.65	0.19	0.17	99.0
NO2-NO3- NH3-N N - mg/l mg/l	दा:0	0.27	0.25	0.20	0.24
Temp. NO.	7.8	,	8.6	3 8.5	8.2
Jemp C	7	я			9
Date	1.8/6/7 7 7.8	στ 19/1/τι	9.8 ६ ४/१/टा	19/5/21	९ ४५/ता/त

TABLE 7
INLAND STEEL LAGOON SURVEILLANCE
Station CE 4-0

	Remarks		Wind West, Oli Oli surface	wind north	wind south - 11ght,	oil on surface	wind west - strong, water rough	wind southeast	wind south	wind south	-	wind west	
	Turb.				2.5		7.0	3.9	5.0	 	Ì	6.1	
011 &	grease mg/l		ğ	6.0	N.	!	Ä	7.0	Ż		- 5	2.8	
Sugp.	Solids mg/l		97	2)	}	15	ន	m	, (Υ)	ထ	
Dia.	Solids mg/1		177	#	ă	\$	180	386	184		217	161	}
	COD		3.0	3.8	6	X	ជ	ឧ	ď	;	ង	,	
	Tot.P		0.039	0.045	-	0.041	0.025	0.0	8	5	0.053	6	0.03
	Org.N Sol.P	18	0.013	o.080		0.017	٥.0	000		4 70.0	0.000	6	0.0
	Org.N	17/2 <u>H</u>	0.36	0.31	•	0.41	0.17	ָרָ בּ		0 N	٠. الآ	•	0.2 0
	NH3-N	12/2	0.40	69	}	69.0	o.	1	‡	0.21	0.78	•	0.63
	NO2-NO3- NH3-N	N - mg/1	0.23	8		0.26	0.13	,	8 .0	o.16	0.2 ⁴		0.2 ⁴
	١.	ос _Л н	7.5		1	8.1	7.5		8. 1.	8.6	8.0) }	8.2
	dia dia dia dia dia dia dia dia dia dia	ပ	-	(3	<u>.</u>	m		≠	8	9	•	9
		Date	11/6/67 7 7.5 0.23		or 19/1/tr	11/21/67 7 8.1	11/28/67 3 7.5	29	11/29/67 4 8.1	2/1/67 3 8.6	9 13/3/61	10/6/3	ह.8 ७ ७/घ/घ

0

TABLE 8
INLAND STEEL LAGOON SURVEILLANCE
Station CE 5-0

į	Temo.	Temp.	NO2-1:03 NH3-N	NE3-N	Org.N	Sol.P	Tot.P	COD	Dis. Solids mg/l	Susp. Solids mg/l	Oil & grease mg/l	Turb. unite	Remarks
3	اد									Ş			1400
or 19/1/tr	9	•	0. 19	0.59	o M	9.0	0.039	2.5	\$T2	궠	٠. ب		Wind north
1,21,67 7 8.1	-	8.1	0.2 ⁴	0.35	0.29	0.017	3.0°0	23	190	15	SO.	2.4	wind south, grease blobs
u/29/67 5 8.3	٧	8.3	0.27	0.50	0.21	0.011	0.027	Я	183	9		3.9	Wind southeast
9 19/1/ज	9	4.6	91.0	0.21	0.22	o.014	0.024 0.024	8.2	1 81	e	ž	5.0	wind south, water brown
) 19/5/za		, 8	0.26	8.0	0.48	0.021	0.053	7.3	217	\ 5	स्र	7.0	wind south, water murky
s 19/दा/दा	₽	8.1	0.23	0.45	0.11	930.0	0.039	5.9	175	ھ	2.0	5.9	wind west

30

TABLE 9

8

INCAND STEEL LAGOON SURVEILLANCE Station CE 6-0

Date	of a co	Temp.	NO ₂ -NO ₃ - NH ₃ -N Org.N Sol.P Tot.P N - mg/l mg/l mg/l mg/l	NH3-N mg/l	Org.N mg/l	Sol.P mg/l	Tot.P mg/l	COD Trg/1	Dis. Solids mg/l	Solids mg/l	011 & grease 国g/1	Turb.	Remarks
6 19/1/71	6	•	0.19	0.55	0.25	0.023	0.039	1.7	195	13	0.3		wind north
17/21/67	.a+ ►	4.8	n.º	90.0	0.23	0.0	0.024	15	150	10	Æ	1.5	wind south
11/29/67	8	8.5	0.13	0.01	90.0	0.007	0.013	ង	1 91	ន	NF	3.9	wind southeast
s 19/1/21	М	8.3	0.17	0.18	97.0	0.013	0.015	14	171	m	AF.	2.4	wind south
19/5/21	m	8.6	0.15	0.18	य:0	0.009	0.021	13	159	6	0.8	5.9	wind south
६ ४९/दा/दा	2	8.2	0.14	वर.0	0.55	0.016	0.025	9.6	154	9	1.1	5.6	wind west

()

TABLE 10
INLAND STEEL LAGOON SURVEILLANCE
Station CB 7-0

Remarka	wind north	wind south	wind southeast	wind south	wind south	wind west
Turb.		2.2	1.5	2.5	4.5	3.5
grease	0.1	Ž.	ğ	M	0.3	1.1
Solids mg/1	2	ជ	9	8	æ	9
Dis. Solids mg/l	175	167	205	183	398	156
COD mg/l	₹.0	15	ន	7.3	97	3.2
Tot.P mg/l	0.02t	0.057	0.025	0.018	0.046	0.01B
Org.N Sol.P mg/l mg/l	9.00	0.017	0.009	0.013	0.019	0.011
Org.N mg/l	0.18	\$.0	0.23	0.17	† .0	0.17
NH3-N	9.16	Ø.0	0.61	8.	9.6	0.15
NO2-NO3- NH3-N N - mg/l mg/l	0.13	0.30	0.3 4	0.28	0.21	0.15
Temp.	1	8.0	8.1	. e.	8.1	4. 8
C C	-	9	9	m	~	4
Date	7 79/7/11	9 19/12/11	9 19/62/11	3/1/67	2/5/67 5	१ ८९/टा/टा

TABLE 11

INTAND STEEL LAGOON SURVETLLANCE

Station CE 8-0

	Кепагка		Wind north	wind south	wind southeast	wind south	wind south	wind west
Thirb.	unite			1.7	3.9	3.7	3.0	3.9
OIL &	mg/1	 	္	NG	NF	6.0	0.3	9.0
Susp.	mg/1		ន	9	검	#	6	п
ots.	201105 mg/1		% 17	155	1 91	163	156	200
Ç	7/2m		5.1	15	4.6	7.7	1.5	3.9
	Tot.F	= /0=	0.043	0.027	0.017	0.015	0.025	0.028
	I Org.N Sol.P Tot.P Coll $mg/1 = mg/1$	1 0	0.021	0.010	0.00	0.013	0.012	0.028
	Org.N	1/8/1	o.18	0.21	0.0	0.14	0.26	0.21
1	7.5	٦١.	0.62	90.0	, o	п. ₀	0.15	Δ 4.0
	No2-NO3- NH3-	1/XH - N	9.16	0.13	य:0			0.20
	:	핌	•	7.5	4.7	8.5	8.7	8.2
	Temp.	إر	9	±	m	, er		· ·
		Date	σι 19/1/τι	7.5 th 19/12/11	11/29/67 3 7.4	12/1/67	12/5/67 3	५ ५ ५/त/त

()

TABLE 12

INTAND STEEL LAGOON SURVEILLANCE

Station CE 9-0

	Renarks	orth	444		southeast	4	Bouch	south	west	
	2	wind north	tigo es	no mark	wind s	4	ATDG &	wind a	vind v	
	Turb. units			-	3.7	`	۲. 9	3.7	4.5	
011 &	grease mg/1	1.2	į	Ž	Ð	;	È	9.0	1.9	ì
Sugn.	Solids mg/l	ผ		ឧ	ន		σ	ప	4,5	i
Ha.	Solids mg/l	170	<u>,</u>	ब्र ु	191	ļ }	170	891	946	2
	COD 188/1	٦,	•	ያ	5	ł	8.2	13		4.7
	Tot.P COD mg/1	200		0.031	710	7000	0.08	0.032		0.0g
	Sol.P		0.0	0.013	760	3	0.014	210.0		0.0 <u>1</u> 0
	Org.N S		0.14	о. п.о	,	9.0	0.20	G C	3	24.0
	NH3-N	1/8	4.0	0.24		0.03	0.21	8	કે •	0.15
	NO2-NO3- NH3-N	N - 18/4	0.10	0.17	•	0.15	0.10		0.19	61.0
	1	핃	ı	8,3		7.8	4	•	1.9	8.2
	Temp.	ပ	6	r,	•	Q	'n	n .	4	m
		Date	6 29/2/77	3 29/10/11	10/43/44	2 19/62/11	77/1/01	C 10/1/21	12/5/67	६ ४९/दा/दा

34

TABLE 13
INLAND STEEL LAGOON SURVEILLANCE
Station CE 10-0

Date	Je II	围	Temp. NO2-NO3- NH3-N OC pH N - mg/1 mg/1	NH3-N mg/1	Org.N mg/1	Sol.P mg/l	Tot.P mg/l	COD mg/1	Dis. Solids mg/l	Sump. Solids	Oil & grease mg/l	Turb.	Renarks
7 79/1/41	t	•	0.09	9.05	0.45	0.01	0.011	1.7	170	9	0.3		wind north
11/21/67 5 8.2	5	8.2	0.17	0.23	0.28	0.008	0.027	27	951	σ,	NF	2.0	wind south
11/29/67 3 8.3	<u>ا</u>	8.3	व.0	0.01	90.0	0.006	0.011	ជ	168	6	Ð	1.3	Wind southeast
12/1/67 3 8.3	3	8.3	0.15	0.19	0.15	0.012	0.017	6.9	178	3	N.	3.1	wind south
2/5/67 5	5	8.1	0.19	0.45	0.56	0.016	0.039	9.8	174	6	0.1	4.5	wind south
५.८ ६ ४% व.५	7 3	8.5	9.16	0.24	o 84	0.014	0.021	4.5	1 97	9	0.7	4.5	wind west, popcorm slag

 \overline{C}

TABLE 14
INLAND STEEL LAGOON SURVEILLANCE
Station CE 11-0

Remarks	vind north	wind south	vind southeast	vind south	wind south	wind west	
Turb.		1.5	2.2	3.1	7.0	8.0	
Oil & grease mg/l		0.3	7.0	0.3	0.5	È	
Susp. Solids	6	8	6	Q	a	28	
Dis. Solids mg/l	176	147	397	6 91	191	158	
COD #8/1	1.4	9	ជ	6.9	7.3	8.0	
	0.031 4.7	0.028	0.00	0.017	0.025	0.021	
Sol.P Tot.P mg/l mg/l	0.020	0.008	0.008	900.0	0.012	970.0	
Org.N mg/l	0.19	0.16	0.03	0.25	0.15	0.31	
NH3-N mg/1	0.40	90.0¢	0.01	9.0	0.10	0.07	
NO2-NO3- NE3-N N - mg/l mg/l	0.17	0.09	o. 10	0.10	97.0	π.0	
Tem. Oc pH	ı	8.0	8.6	8.5	8.6	8.6	
Temp.	6	. 	ب	က	m	3	
Dute	6 19/1/11	17/21/67	11/29/67 3	£ 19/1/21	ड <i>1</i> 9/ ८ /टा	६ ४५/दा/दा	

TABLE 15 INLAND STEEL LAGOON SURVELLLANCE Station CE 12-0

	Remarks	,	wind west,	10 110	wind north	7	vind west	wind southeast,	oil on surface	(in Attack and	on surface,	water brown	Wind south,	water muray	wind south,	water murky
,	Turb. unite						2.0	7,5	`		4.7 C		η•6		6.8	
Oil &	grease		0.1		0.2	<u>:</u>	0.5	ć	6.0		1.0		₹.0		9.0	
Susp.	Solids	- 18	8		5	3	‡		2		7		91	i	u	
Dia	Solids	7/2m	† 2		(212	205	, '	238		8		978	2	ţ.	<u> </u>
	COS.	18/7	α,	•		5.5	4	3	ង		Ħ			9		9 . 9
		- {	2.067	3		0.052	g	3	0.043		190.0			0.070	. '	0.067
	Sol.P	四8/1	1	0.0%		0.082	•	0.017	0.018		6			0.025		0.019
	Ord N Sol.P	18/1		•		0.35	}	0.43	Ġ	ર •		J.#.0		0.50		04.0
	1		À	•		ر بر		0.70	•	1.3		1.3		1.3		1:5
		NO2-NO3- NH3-N	1000	•		Ş	٠ ج	o.3		°.5		0.30		o.)	0.35
			١	7.1			•	7.3		7.5		7.8		7.6	<u>.</u>	1.9
		Temp.		9			コ	œ	•	ထ		ω		c	^	<u>م</u>
		E	Date	1.7 01 29/9/11	1		19/1/77	8 79/10/11	In the tra	11/29/67 8		8 19/1/21	37	2012169	6 10/C/21	६ ४९/दा/दा

TARLE 16
INTAND STEEL IAGOON SURVEILLANCE
Station CE 13-0

Renarks	wind north, oil on surface	wind west	wind west	wind southeast, oil on surface	wind south, oil on surface, water brown	wind south, oil on surface water murky	wind west oil on surface water murky
Turb. unite		3.7	0.6	1.01	9.0	4.8	6.8
0il & grease mg/l	0.1	0.3	E S	1.1	1.8	1.6	0.5
Susp. Solids	91	13	91	1 7.	7	ន	9
Dis. Solids mg/l	219	215	276	261	263	245	82.
COD Fig/1	7.6	33	•	0.6	13	भ	6.8
Tot.P mg/l	0.053	0.091	090.0	0.067	0.043	0.106	0.095
Sol.P mg/l	0.017	0.019	0.014	0.032	0.025	0.030	0.083
Org.N mg/J.	0.31	0.40	•	09.0	0.0	05.0	0.80
NH3-N mg/1	0.89	1.47	1	1.4	1.9	1.5	8.1
NO2-NO3- NH2-N N - ms/1 ms/1	0.27	0.39	ı	0.61	0.43	0.38	14.0
띰	1	7.6	4.7	1.0	7.5	7.5	7.7
Temp.	ឧ	ជ	9	ជ	ជ	9	ង
Date	στ 29/1/τι	1.67 u 7.64zu	11/28/67 to	11/53/67	19/1/21 38	ot 19/5/2t	त ४९/ग्र/ग

APPENDIX A

ANALYSIS OF BOTTOM SAMPLES 12/12/67

All results in mg/kg - Dry Basis

Parameter	CE 1-gap + 50 50 yds outside gap	CE 3-I Inside lagoon	CE 12-0 Indiana Harbor
% Total Solids	78.9%	35.1%	37-9%
% Tot. Vol.Solids	3.3%	8 .0%	6.6 %
COD	5210	351,500	261,500
ин ₃ -и	NF	327	264
и03-и	2.7	3.1	2 2
Org N	28	1945	7 57
Total Phosphorus	107	986	786
Tot. Sol. Phosphor	rus 1.18	6.74	1.32
Phenol	0.04	1.14	0.97
Oil & Grease	425	39,500	27,900
Total Iron	21,450	17,210	57,000
Cyanide	NF	4.33	5.70
Sulphide	5.8	986	351
Copper	28.5	45.6	95.5
Cadmium	NF	NF	NF
Nickel	19.0	NF	NF
Zin c	841	7 47	1480
Lead	279	314	396
Chromium	63.4	94.0	79.2

APPENDIX A8

CALUMET RIVER
DREDGING PILOT PROJECT

1967 - 1968

U. S. Department of the Interior

Federal Water Pollution Control Administration Great Lakes Region Chicago, Illinois

TABLE OF CONTENTS

					Page
Table of C	cntent	ts			1
Introducti	on				2
Conclusion	s				4
Chronology					5
Discussion					
	m Sedi Quali				7 8
Tables					
Table Table	2 - S 3 - A 4 - C 5 -	Sediment A .verage Ch	nalysi emical	ment Analysis s Analyses , Vicinity of Dredge Temporary Spoil Area Land Spoil Outlet	11 12 13 14 15 17
Figures					
Figure	2 1 - 2 3 - 4 5 6 7 8 9 10 11 12 - 1	Distrib	- 11	Project Area Surveillance Stations of Organic Nitrogen Ammonia Nitrogen Nitrate Nitrogen Soluble Phosphorus Total Phosphorus COD Dissolved Solids Suspended Solids Oil & Grease Turbidity	18 19 20 21 22 23 24 25 26 27 28

The state of the state of

Introduction

With responsibility for maintenance of the waterways of the United States delegated to the United States army Corps of Engineers, and with the FWPCA being interested in the effects of dredging and dumping operations on water quality, a joint agreement included provisions for studies to develop alternate disposal methods. In conjunction with a pilot program to develop such alternate means of disposal, a land disposal site was located in the vicinity of Lake Calomet to accommodate the dredged material from the new work and maintenance dredging project in the Calomet River between Lake Michigan and Turning Basin No. 5 (see Figure 1).

The 91-acre-land disposal area is located east of Lake Calumet and north of the Calumet River in Chicago, Illinois. Dredged material is transported by scows from the dredging location to a temporary disposal site in Slip No. 2. The material is then pumped by a hydraulic dredge from the temporary spoil area by a 16 inch pipeline to the land site. Effluent from the land area subsequently drains by a ditch southward to an outfall on the Calumet River (see Figure 2).

A sampling program was established for the purpose of evaluating the dredging and disposal methods in use at this Calumet River Pilot Project. The procedure for surveillance of this project involves sampling above and below the dredging location, sediment sampling from the scow, water sampling in the vicinity of the temporary spoil area and collection of water samples from the land disposal outlet. Determination of the effectiveness of this disposal method is based upon

an evaluation of the results obtained from the sampling program, and on observation of the dredging procedure.

- 3 -

Para try 10 miles in the

Conclusions

- Dredging operations had a negligible immediate effect on water quality of the Calumet River.
- 2. There was no pronounced difference in water quality at the temporary spoil area inside or outside the submerged dike before or after dumping.
- 3. The dredged material dumped into the temporary spoil area was reasonably contained.
- 4. The detention time for settlement was not long enough to effectively reduce the turbidity and suspended solids to a degree which
 could be realized if control of the drainage was improved.
- 5. With exception of nitrate nitrogen and total soluble phosphorus, all parameters were higher at the land spoil outlet tran at any other location sampled.
- 6. Bottom sediment samples indicate that pollutional material is present in high concentrations in Calumet River.

Chronology

- April 14, 1967 FWPCA was informed by the Corps of Engineers that it tentatively planned to dispose of dredged material in a land spoil area in the vicinity of Lake Calumet.
- July 12, 1967 Predredging bottom sediment samples collected

 September 1, 1967 The contractor commenced maintenance dredging.

 All material to be dredged was to be deposited in a temporary disposal area in Slip No. 2 in Lake Calumet. The contractor proposes to accumulate dredged material in a temporary spoil area until October 1-15, 1967 at which time a hydraulic dredge will be placed in operation to rehandle the material from Slip No. 2 to the land disposal area.
- October 3, 1967 Rehardling of dredged material from temporary spoil area to land disposal area started.
- October 26, 1967 On site inspection of land disposal area performed by FWPCA personnel. Water samples collected at drainage ditch outlet to the Calumet River.
- November 9, 1967 Initial collection of water and sediment samples taken at three locations:
 - (1) vicinity of dredge water samples 1000 feet upstream and downstream from dredge and sediment samples from scow
 - (2) temporary spoil area inside and outside submerged dike
 - (3) outfall ditch from land spoil area to outlet.

Chronolog: (continued)

Movember 16, 1967 - Collection of water and sediment samples.

November 22, 1967 - Collection of water and sediment samples.

November 30, 1967 - Water samples taken at all stations; included samples collected one-half hour before and after dumping at temporary spoil area.

December 6, 1967 - Dredging operations terminated.

January 12, 1968 - Collection of water samples at land spoil outfall.

January 17, 1968 - Collection of water samples at land spoil outfall.

February 5, 1968 - Pumping of dredged material from temporary spoil area to land spoil area completed.

DISCUSSION OF ANALYSIS

Bottom Sediments

Predredging bottom sediment samples were collected in Calumet River on July 12, 1967 with the results shown on Table 1. Sediment samples during the 1967 - 1968 dredging period consisted of a series of three weekly samples collected directly from the bottom-dump scow into which the dredged material was placed by means of a clam-shell type bucket dredge. Representative samples were obtained from at least 5 hoppers on the scow and composited. The results of the analyses performed on the composite are presented in Table 2.

The laboratory results of the samples taken prior to dredging indicate pollutional material present in the bottom sludge. COD, ammonia, phosphates, oil and grease, iron and the toxic metals, namely copper, lead, chromium, zinc and nickel are present in high concentrations.

The iron and toxic metals are indicative of iron and steel and other industrial waste discharges.

Water Quality

Water samples were collected in the project area during the dredging operations on seven different occasions. The results of the four samples taken 1000 feet above and telow the dredge on the Calumet River reveal no significant differences in water quality due to dredging activity although downstream from the dredge there was a slight increase in suspended and dissolved solids and turbidity. The analyses for the water samples in the vicinity of the dredge is shown in Table 4.

Samples were collected both inside and outside of the submerged dike at the temporary spoil area and on one occasion samples were taken one-half hour before and after dumping into the area. The data in Table 5 indicates that inside the diked area, the turbidity and suspended solids are higher one-half hour after dumping compared with samples taken before dumping. However, outside the submerged dike the turbidity and suspended solids are no higher before or after dumping which demonstrates that the dike was generally effective in cortaining the dredged material inside the temporary spoil area.

The Corps of Engineers, through soundings of the temporary spoil area before and after dumping concluded that for all practical purposes the entire volume of approximately 277,000 cubic yards was pumped onto the land spoil area.

Water samples were collected at the land spoil outlet on seven occasions to determine the quality of water draining from this land

The Marian Construction

area back to the Calumet River. A comparison of average values in Table 3 shows that concentrations of organic nitrogen, total phosphorus, COD, solids, oil and grease and turbidity were much higher in the effluent from the disposal area than in any of the other waters sampled.

It should be noted that individual test results on the effluent samples varied widely (see Table 6). These results may be affected by the type and quantity of material being deposited in the spoil area on the days sampled, by the mixing which occurs in the hydraulic dredging operation, and by rainfall which has occurred immediately prior to sampling.

On October 26, 1967, three weeks after pumping to the land spoil area was begun, an on-site inspection of the area was made. The appearance of the water drained in the outlet ditch was obviously higher in solids than the receiving waters of the Calumer River and cil was visible on the surface in the outlet ditch. The physical character of the disposal area did not provide adequate time for settlement. The condition at the outlet of the hydraulic pipeline did show results of solid material building up, but from this point the water containing large amounts of suspended solids flowed overland across a wide area, into the drainage ditch and was discharged through the outlet culvert to the Calumet River.

Additional settling time is necessary to reduce suspended solids before discharge to the Calumet River. The disposal area should be diked with a controlled outlet to regulate the overflow after a longer settling time has been realized.

Graphical presentations of the water quality data are shown in Figures 3 - 12.

CALUMET RIVER - FOTION SECTIONS

Results expressed in mg/kg - dry basic

July 12, 1967

Station	1	5	6	7	9	10	11
River Mile Parameter	332.8	332.2	331.2	330.7	330.2	329.1	327.7
% Total Solids	49.1	58.3	59.0	45.5	58.2	50.3	57.9
% Voluvile Solids	4.1	6.2	6.4	13.2	9.4	9.0	5.7
хн3-и	59	76	98	148	65	81	66
1103-и	9.1	1.7	0.7	0.7	1.2	0.6	0.3
Organic-N	71+1	964	1192	908	685	1.199	1134
Total Soluble Phosphoru	s 2.3	31 4.10	11.5	8.68	2.13	1.6	5 2. 33
Total Phosphorus	1370	1161	2031	686	447	2175	539
Oil and Grease	4900	5900	8030	- 20,850	26,100	34,400	3420
COD	87,200	95,200	132,000	197,000	231,500	165,000	69,900
Pheno1	1.865	1,800	0.305	1.710	1,080	1.070	0.260
Cyanide	2.94	1.72	9.50	33.6	12.2	9.85	0.014
Sulfide	619	292	242	600	394	585	78
Total Iron	88,700	70,100	50,600	96,100	75,400	80,600	27,550
Cu -	*	9.8	7.6	55	12	25	14
Cd	*	*	*	*	*	*	*
Ni	12	*	*	23	*	32	*
z_n	39	59	149	472	330	410	127
Ро	79	129	16 8	440	820	626	103
Cr	8.1	8.6	12	20	62	68	19

^{*} Not detected at sensitivity of test

Table 2
CALUMET RIVER DREDGING STUDY

Sediment Samples

All results in mg/kg - Dry Basis

Parameter	Barge Hopper November 22, 1967	
% Total Solids	76.1 %	
% Total Vol. Solids	9.8 %	
COD	25,150	
NH ₃ - N	69.3	
NO3- N	2.1	
Organic - N	750	
Total SolP	0.752	
Total - P	289	
Phenol	0.18	
Oil & Grease	1,000	
Copper	9.20	
Cadmium	nf	
Nickel	25.0	
Zinc	47.5	
Lead	123	
Chromium	13.1	
Total Iron	17,890	
Oyanide	NF	
Sulfide	6.0	

N.F. - None Found

- Car Maring Million

TABLE 3

CALUMET RIVER DREDGING STUDY

All Stations - Average Values Water Samples

Sampling Location	Org-N	$NH_{3}-N$	NO3 -N	Total	TotP COD	COD	Dis.	Sus	03.1 &	Ė
	(mg/1)	(mg/1)	(mg/1)	SolP (mg/1)	(mg/1)	(/ om)	Solids ("/m"/)	Solids	Grease	3 H
Above dredge	ò	i c					(=/3;;; /	777200	(1/20)	
egno in occasi	28°0	2.5	0.92	0.031	0.107	12	304	27	1.4	2
Below dredge	0.55	2.4	1.05	0.024	0.178	7,	3/2		1	}
Out of de Dite	,	:			}	†	\	מ	٥.5	39
(before dumping)	/••\ 0	2.5	1.2	0.019	0.070	77	398	72	ò•0	23
Outside Dike	1.13	2,3	1.1	0.013	0.043	٤.	37.R	: 5)
(ar cer ammbing)				i		ì		Ç	٥.3	36
Inside Dike	0.50	2.7	7.1	610	Č	;	,			
(before dumning)		•	t i	270.0	6/0.0	77	392	53	0.3	33
Inside Dike	0.65	, ,	(;					
(after dumping)	•	†	7.7	070.0	980.0	22	707	180	N.F.	8
Land Spoil Outlet	10.0	5.4	1.0	0.018	4.676	1250	520 10	00 830	·	
N.F None found									1 7 7	700,11

Table 4

Calumet River, Illinois

LAND DISPOSAL PILOT PROJECT SURVEILLANCE

Water Sampling Analysis

Location: Galumet River, 1000 ' above or below dredge

)			,
Date te	Org-N	NH3-N	NO3-N	Total SolP	TotP	cop	Dis. Solids	Sus. Solids	Oil & Grease	Turbidity
	(me/1)	(1/2m)	$(m_{\mathcal{E}}/1)$	(L/2m)	(me/1)	(-/ ow)	(L/ cm)	(L/2/1)	(1/2/1)	(mg/1) ((1/m;+c)
Nov. 9,1467							<u>. </u>			- Carring
Above dredge	0.91	2.3	0.85	760.0	0,123	12	352	57	1.0	
Below dredge	0.10	2.2	0.0	0,025		17	342	76	0.5	
					_					
Nov. 22, 1967										
Above dredge	0.80	2.7	1.0	0.028	060.0	11	797	07	1.7	50
Below dredge	1.0	2.5	1.2	0.023	0,110	77	342	47	7.0	39
	~									
		1								
	1									
							-			

Table 5

Calumet River, Illinois

LAND DISPOSAL PILOT PROJECT SURVETLIANCE

Water Sampling Analysis

Location: Temporary Spoil Area at Submerged Dike

))			
Date	Org-N	NH3-N	N-EON	Total SolP	TotP	COD	Dis. Solids	Sus. Solids	Oil & Grease	Turbidity
	(L/Sm)	(mg/1)	(L/Z/)	(L/2m)	(mg/1)	(me/1)	(L/DM)	(L/om)	(L/ 2m)	("noite)
Nov. 9,1967			,					1075	797	783 7100
Cutside	08.0	2.0	1,1	0.027	0,116	11	366	37	0.8	
Inside	0.20	1.9	1,1	0.026	0,130	13	350	50	0.7	
Nov. 22,1967										
Outside	0.70	3.2	1,2	0.021	0.074	12	364	32	6.0	1.6
Inside	0.88	2.7	2.0	0.020	0,095	17	360	54	0.8	27
Nov. 30, 1967	(T)	or (R)	denotes 1	eft or rig	denotes left or right end of dike	dike				
(L) Outside	07.0	2.6	1.3	0.016	0,088	15	607	7.5	0.3	26
(L) Inside	0.50	2.7	1.4	0.018	0.088	13	421	67	NF	32
(R) Cutside	0.70	2.5	1.4	0.020	0.074	12	403	39	1.6	02
(R) Inside	0,20	2.5	1.4	0.016	910.0	13	398	52	NF	32
								-		
NF =	None Found	nd					-	-		
							1			
			+		+	1				
									-	
_			_		-					

(continued) Calumet River, Illinois Table 5

LAND DISPOSAL PILOT PROJECT SURVETLLANCE

Water Sampling Analysis

Location: Temporary Spoil Area at Submerged Dike

ate	Org-N	NH3-N	NO3-N	Total SolP	TotP	COD	Dis. Solids	Sus. Solids	Oil & Grease	Turbi
	(L/Jm)	(mr/1)	(mg/1)	(mg/1)	(mg/1)	(1/60)	(L/ om)	(L/ L/)	(11/2/2)	(1,7,4
16/67	Following	samples	ing samples dollected pne-half hour before	one-half h	our before		ne-half h	bur after	(B) and one-half hour after (A) dumping	
	into the	temporary	ne temporary sump area.	(I) and	(R) denote	left and	rioht of	cultmorgad	(L) and (R) denote left and right of submersed dive location	ا ج- اند
						200	* * * * * * * * * * * * * * * * * * *	na grana	True Toca	• 100
Outside	submerged dike:	dike:								
(B)	0.20	2.3	1.1	0.015	0.026	14	697	63	1.5	7
(A)	0.95	2.3	1.1	0.013	0.048	13	373	67	0.2	1 6
(E)	1,2	2.4	1.1	0.013	0,045	12	376	56	None	7
(A)	1.3	2.3	1.1	0.012	0.038	12	383	57	7.0	
			-							
Inside	Inside submerged dike:	dike:								
(E)	0.83	2.5	1.2	0.012	0.013	16	517	9	0.1	
(A)	0.50	2,3	1,3	0.011	0.126	25	717	175	aud	* *
(B)	07.0	2.3	1.3	0.013	0.052	14	907	75	0.1	: ×
(A)	80	2.4	1.1	0.008	0.045	19	389	185	Nore	5
			<u> </u>	†	1	+	-		_	

70 34

43

7,7

器 유

5

- 16 **-**

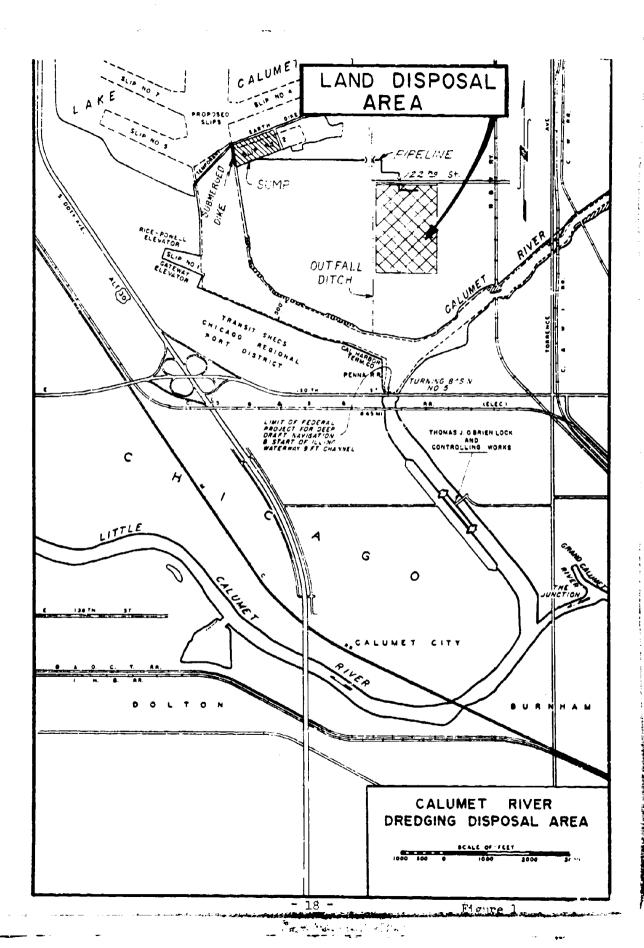
Harris de la companya del companya del companya de la companya de

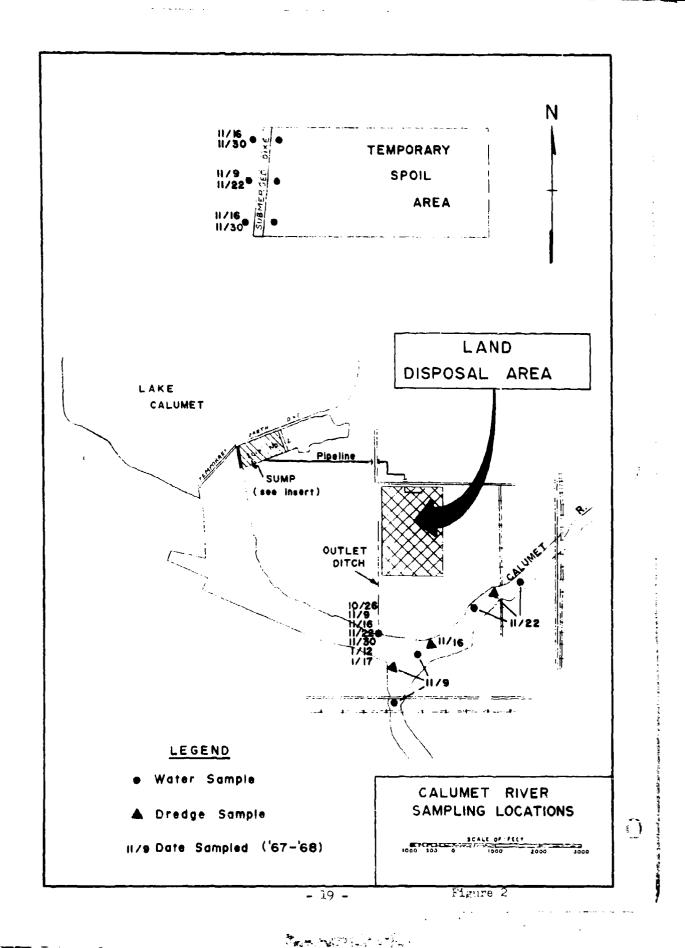
3 (R)

Turbidity (units)

77

Table 6


Calumet River, Illinois


LAND DISPOSAL PILOT PROJECT SHAVEILLANCE

Water Sampling Analysis

Location: Land Spoil Outlet

Date Org-N NNg-N Total TotP COD Diss. Suids Gilds Colds						4	•					
(mg/h) (mg/h)	l	, + -	Org-N	NH3-N	NO3-N	Total SolP	TotP	СОБ	Dis. Solids	Sus. Solids	Cil & Grease	Turbidity
2.0 5.7 1.2 0.018 0.560 90 35-3 1322 luroken 16 11 0.75 0.018 10.8 1115 560 12150 11 11		חם והם	(L/2m)	(L/2m)	(mg/1)	(mg/1)	(me/1)	(mc/\)	(L/3m)		(mg/1)	(units)
2.0 5.7 1,2 0.018 0.560 90 35.8 1322 broken 1.6 11 0.75 0.018 0.560 90 35.8 1322 broken 4.1 0.075 0.012 0.321 2277 390 21390 4.8 5.6 6.0 3.2 0.90 0.013 2.11 36.5 370 4.40 7.4 25 3.9 1.0 0.011 8.07 2594 526 15730 56 7.9 5.1 1.1 0.025 4.07 773 701 8609 5.5 7.9 5.1 1.1 0.021 6.80 1509 797 12203 1.5 7.9 5.1 1.1 0.021 6.80 1509 797 12203 1.5	l											
16 11 0.75 0.018 10.8 1115 500 12150 11 4.1 4.9 0.75 0.022 0.321 2277 340 21830 4.8 5.0 3.2 0.09 0.013 2.11 365 370 4.140 7.4 25 3.9 1.0 0.011 8.07 773 701 8609 5.5 7.9 5.1 1.1 0.025 4.07 773 707 8609 5.5 7.9 5.1 1.1 0.021 6.80 1509 797 12203 1.5 7.9 5.1 1.1 0.021 6.80 1509 797 12203 1.5 8 6.80 1509 797 12203 1.5		10/26/67	2,0	5.7	1.2	0.018	0.560	06	358	1322	broken	
4.1 4.9 0.75 0.022 0.321 2277 390 21830 4.8 25 3.9 1.0 0.013 2.11 365 370 4140 7.4 25 3.9 1.0 0.013 2.11 365 526 15730 56 9.8 4.2 1.3 0.025 4.07 773 701 8609 5.5 7.9 5.1 1.1 0.021 6.80 1509 797 12203 1.5 8 1.1 1.1 0.021 6.80 1509 797 12203 1.5 8 1.2 1.2 1.3 1.3 1.5 1.5 1.5 8 1.2 1.2 1.2 1.5 1.5 1.5 1.5 8 1.2 1.3 1.5 1.5 1.5 1.5 1.5 9 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5 10 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1		11/9/67	16	-1	0.75	0.018	10.8	1115	900	12150	11	
6.0 3.2 0.90 0.013 2.11 365 370 4140 7.4 25 3.9 1.0 0.011 8.07 2594 526 15730 56 9.8 4.2 1.3 0.025 4.07 773 701 8609 5.5 7.9 5.1 1.1 0.025 6.80 1509 797 12203 1.5 8 1.1 0.021 6.80 1509 797 12203 1.5 8 1.1 1.1 0.021 6.80 1509 797 12203 1.5 8 1.1 1.1 0.021 6.80 1509 797 12203 1.5 8 1.1 1.1 0.021 6.80 1509 797 12203 1.5 8 1.1 1.1 0.021 6.80 1509 797 12203 1.5 8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 8 1.1 1.1 1.1 1.1 1.1 1.1<		11/16/67	4.1	6.4	0.75	0.022	0,321	2277	390	21830	8•4	20500
25 3.9 1.0 0.011 8.07 2594 526 15730 56 9.8 4.2 1.3 0.025 4.07 773 701 8609 5.5 7.9 5.1 1.1 0.021 6.80 1509 797 12203 1.5 1 </td <td> </td> <td>11/22/67</td> <td>0.9</td> <td>3.2</td> <td>0.90</td> <td>0.013</td> <td>2,11</td> <td>365</td> <td>370</td> <td>7170</td> <td>7.4</td> <td>0077</td>		11/22/67	0.9	3.2	0.90	0.013	2,11	365	370	7170	7.4	0077
9.8 4.2 1.3 0.025 4.07 773 701 8699 7.9 5.1 1.1 0.021 6.80 1509 797 12203 10	- 1	11/30/67	25	3.9	1.0	0.011	8.07	2594	526	15730	95	10000
7.9 5.1 1.1 0.021 6.80 1509 797 12203		1/12/68	9.8	7.7	1.3	0.025	4.07	773	701	8609	5.5	
		1/17/68	7.9	5.1	1.1	0.021	6.80	1509	797	12203	1.5	
	- 1											
	- 1							-				
	- 1											
	- 1											
	- 1											
	- 1											
	- 1											
	_ i											
	ı											
	l					_						

CALUMET RIVER DREDGING STUDY - Water Sample Analysis, 1967-68

7

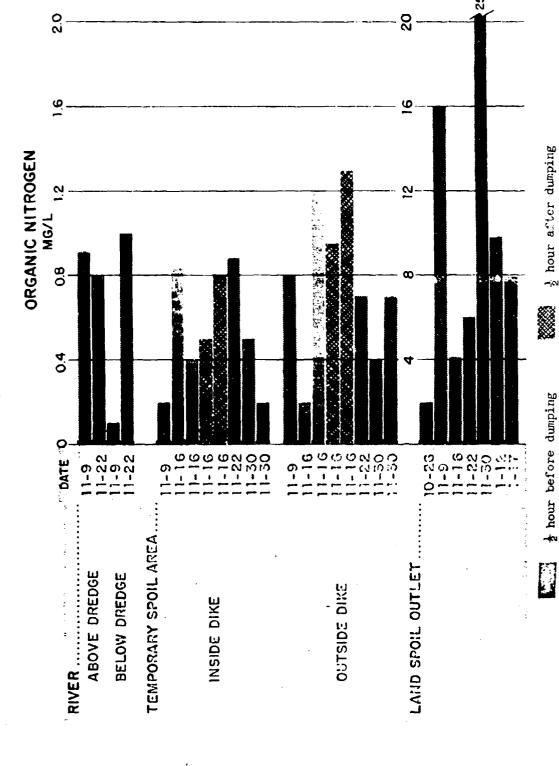
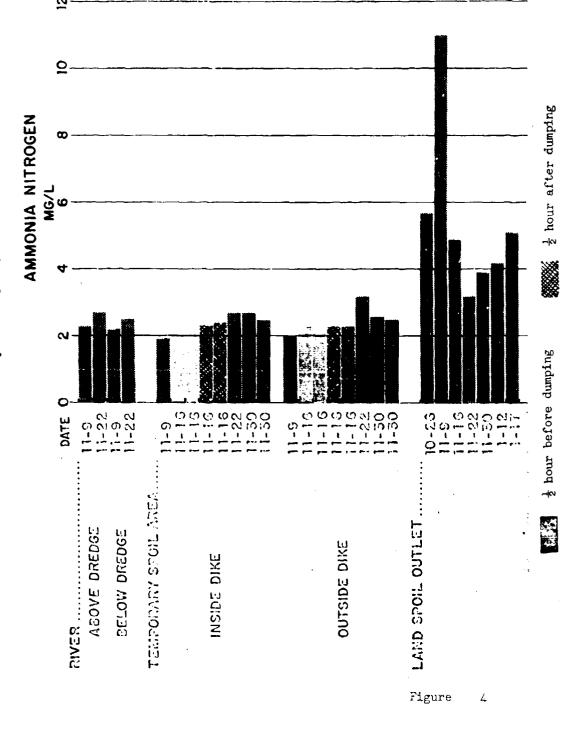
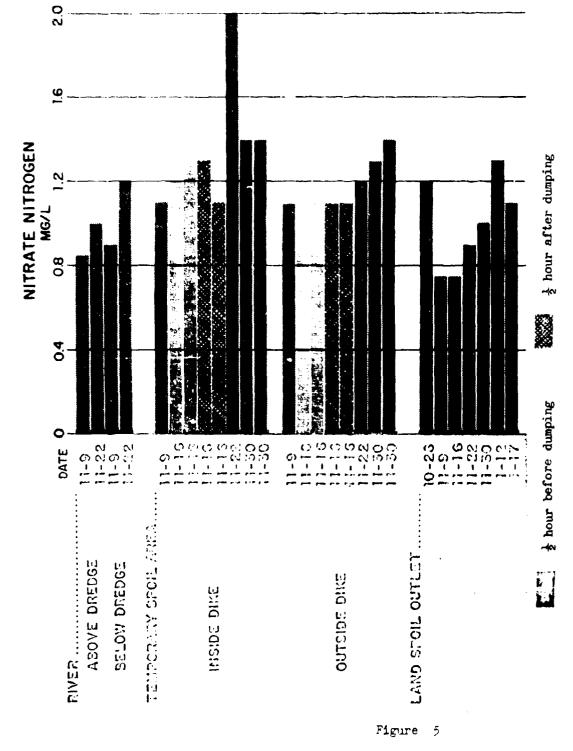
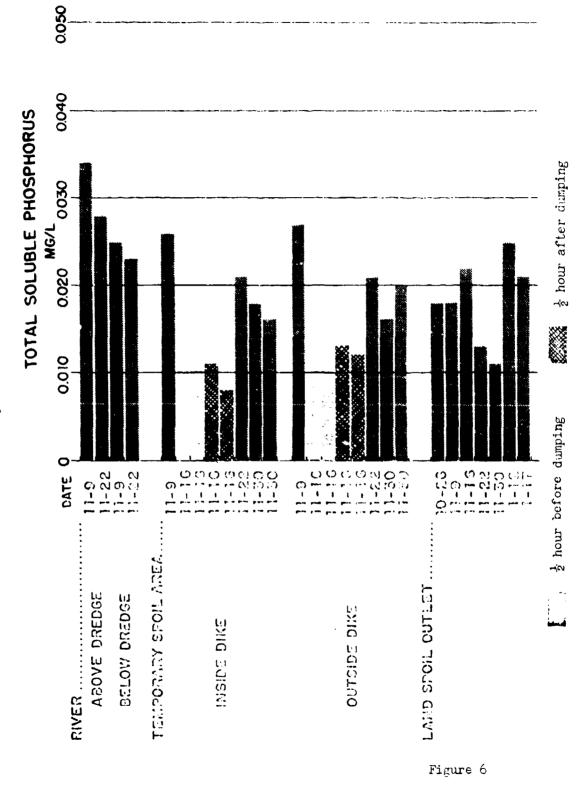
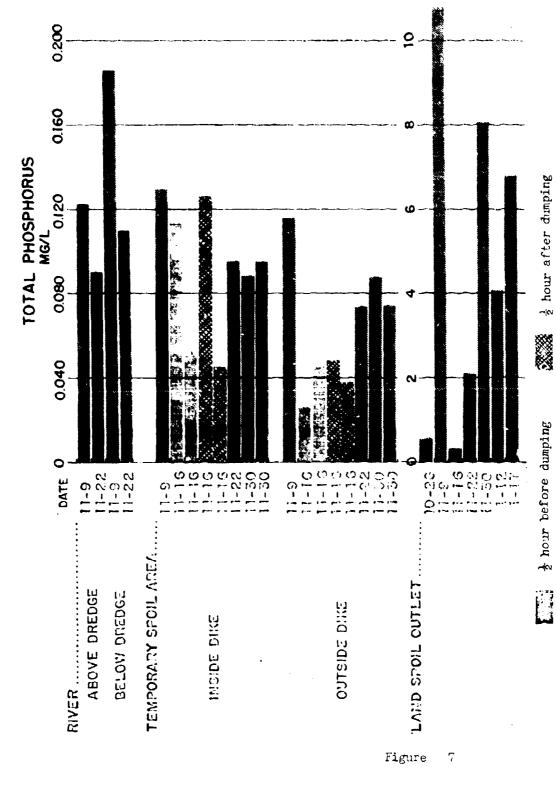




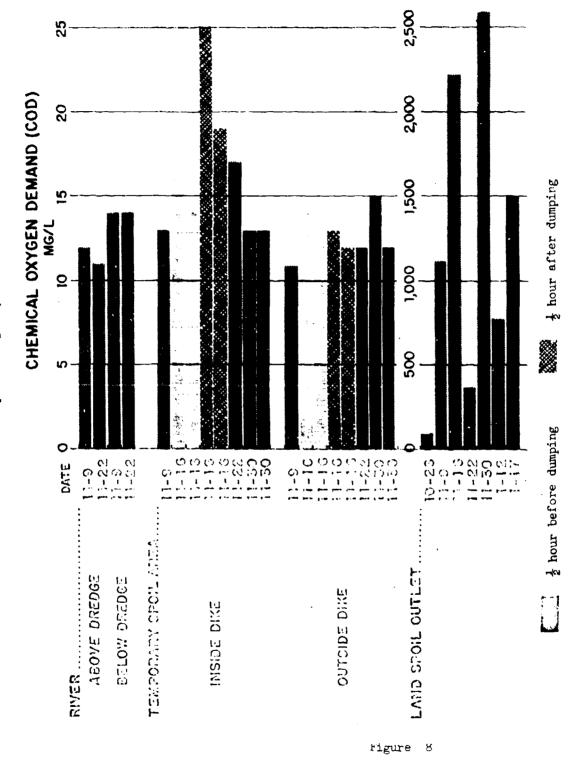
Figure 3


Calumet River Dredging Study - Water Sample Analysis, 1957-63

CALUMET RIVER DREDGING STUDY - Water Sample Analysis, 1937-69

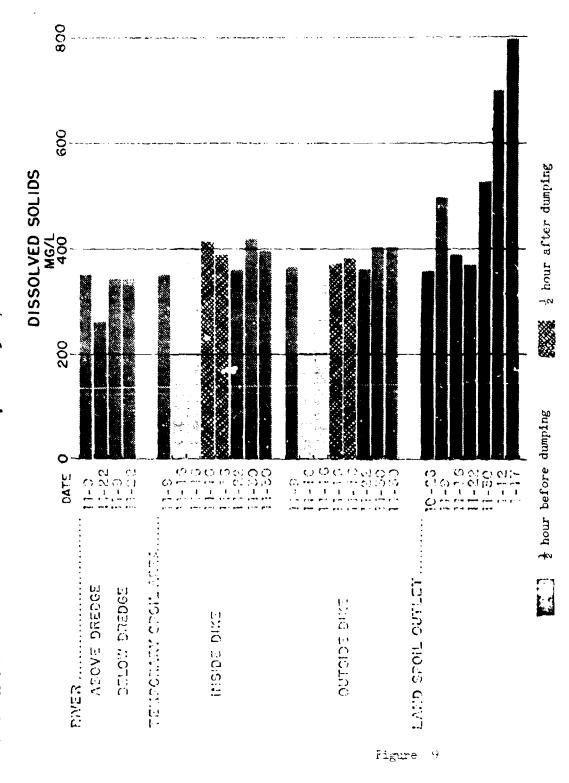


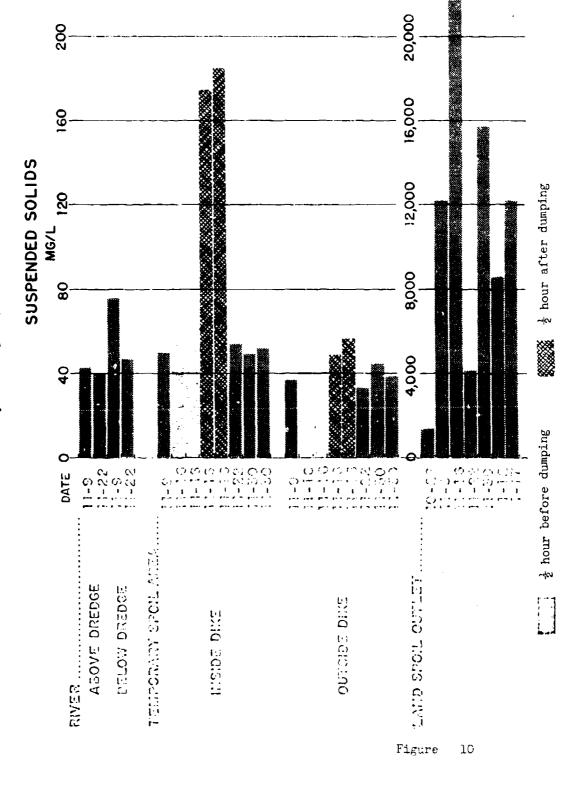
CALUMET RIVER DREBGING STUDY - Water Sample Analysis, 1967-68



()

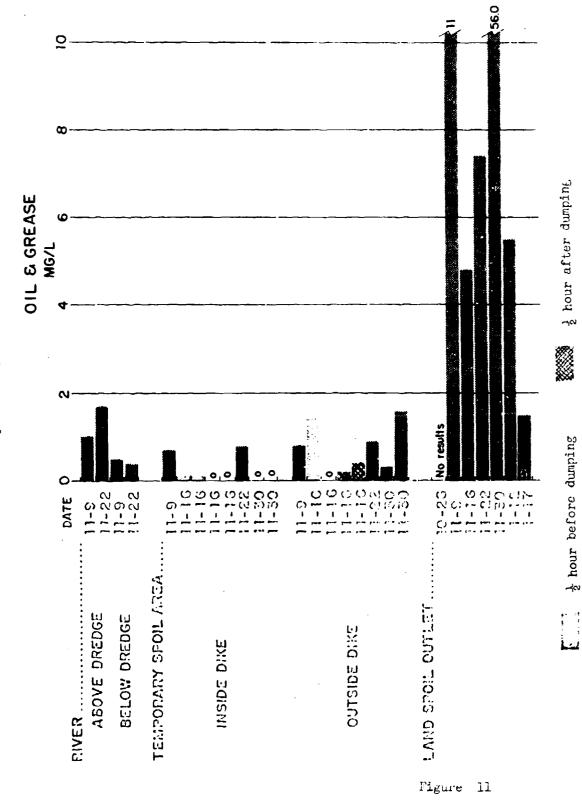
CALUMET RIVER DREDGING STUDY - Water Sample Analysis, 1967-68


CALUMET RIVER DREDGING STUDY - Water Sample Analysis, 1937-68

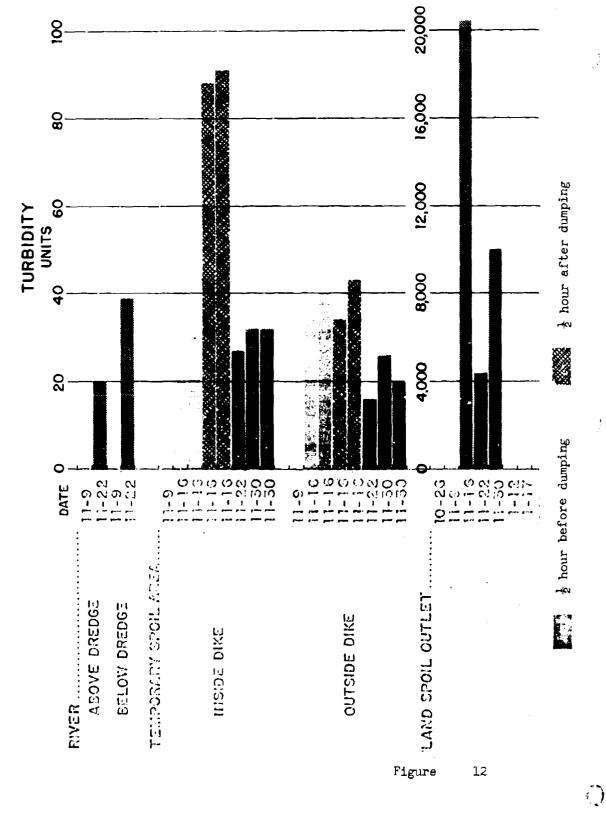

And the second s

Ŧ.)

CALUMET RIVER DREDGING STUDY - Water Sample Analysis, 1837-63


CALURET RIVER DREDGING STUDY - Water Sample Analysis, 1937-63

()


CALUMET RIVER DREDGING STUDY - Water Sample Analysis, 1557-68

ť

CALUMET RIVER DREDGING STUBY - Water Sample Analysis, 1967-69

Ţ

APPENDIX A9

GREEN BAY PILOT STUDY GREEN BAY, WISCONSIN

1967

Prepared by
United States Department of the Interior
Federal Water Pollution Control Administration
Great Lakes Region
Chicago, Illinois
March 1968

ลี้**ม**เซเสมใหม่ได้สำเหลิดสามารถสำเรา

TABLE OF CONTENTS	Page No.
	1
INTRODUCTION	1
1967 SAMPLING PROGRAM	2
CONCLUSIONS	2
CHRONOLOGY	_
DISCUSSION OF DATA Bottom Sediments Water Quality Water Quality in the Sump Area Water Quality in the Land Spoil Area	3 3 5 6 6

FIGURES	Figure No.
	ı
Study Area	
Sampling Locations Bottom Sediments & Water, May 4, 1967	2 3 4 5
Sump Bottom Sediments, July 17, 1967	3
Water, Outlet Pipe, Diked Land Spoil Area	4
Water, Outlet Pipe, Discussion of the State	5
Water, Diked Land Spoil Area	
Fox River-Green Bay Sediment Data, May 4, 1967	4
Total Solids	6
Volatile Solids	6
011 & Grease	7
Total Phosphorus-P	7
Soluble Phosphorus-P	Ď,
Chemical Oxygen Demand	7 7 8 8 9
Total Nitrogen	9
Mitrogen (NO ₃)	
	10
Nitrogen (NH3)	10
Organic Nitrogen	
now a Dilbert twee Water Date	
Fox River-Green Bay & Diked Area Water Data	11
Total Phosphorus-P	12
Turbidity	13
Soluble Phosphorus-P	14
Mitrogen (MO3-M)	

There be the state of the

1)

FIGURES (Continued)	Figure No.
Fox River-Green Bay & Diked Area Water Data (Continued)	
Nitrogen (NH3-N)	15
Nitrogen, Organic	16
Dissolved Solids	17
Suspended Solids	18
Chemical Oxygen Demand	19
TABLES	Table No.
Analytical Results	
Green Bay Bottom Sediment Samples, May 4, 1967	1
Green Bay Water Samples, May 4, 1967	2
Green Bay Bottom Sediments Samples, July 17, 1967	3
Green Bay Water Samples - Outlet Pipe, Diked Land Spoil Area, July 17-18, 1967	4
Green Bay Water Samples - Diked Land Spoil Area, August 17, 1967	5
	1067 6

-

(_

GREEN BAY PILOT STUDY

INTRODUCTION

The Green Bay area is one of eight sites in the Great Lakes selected by the U. S. Army Corps of Engineers for joint study with FWPCA of alternate procedures for the disposal of polluted dredging materials and the effects of these disposal techniques on water quality. This report covers the 1967 FWPCA sampling study in Green Bay.

As part of the pilot program, the channel from the C&NW Railroad Bridge to Long Tail Point was deepened under a contract that commenced on November 8, 1966 and was completed September 26, 1967. Under this contract, 632,000 cubic yards of dredgings were used (1) to fill a 380 acre diked land spoil site at Atkinson Marsh, and (2) to construct a dike inclosing a 230 acre bay spoil area adjoining the entrance channel in the bay, northeast of Grassy Island (see Figure 1). Material dredged from the Fox River channel by two clamshell dredges was placed in a temporary spoil area in the bay, then pumped to the land spoil area by a hydraulic dredge. The temporary spoil area consisted of a sump, 200 ft. by 750 ft., dredged to a depth of approximately 25 feet below the natural bottom of the bay. The hydraulic dredge, working in the channel from the mouth of the river to Grassy Island, pumped directly to the diked land spoil area. The dike in the bay was constructed by hydraulic dredge with material taken from the channel between Grassy Island and Long Tail Point.

1967 SAMPLING PROGRAM

Bottom sediments and water samples from the channel and sump area and water samples from the diked land spoil area were collected for the study. Water samples were also collected in the ditches on each side of

1)

There mass a will be the

Tower Road, south of the diked land spoil area to determine if there was seepage through the dike. No samples were collected from the 230 acre diked area in the bay. Sampling points are shown in Figures 2 to 5.

CONCLUSIONS

- 1. Bottom sediments in the channel and sump have a high chemical oxygen demand and high concentration of oil and grease, total phosphorus, soluble phosphorus and total nitrogen.
- 2. Dredging operations in the sump area caused significant increase in conductivity, alkalinity, turbidity, total phosphorus, nitrogen and suspended solids, in the overlying water.
- 3. Turbidity and suspended solids were effectively reduced by detention in the land spoil area. Concentrations of other constituents in the overflow were generally equivalent to or higher than concentrations inside the spoil area, based on one set of comparative samples.
- 4. Based on the information available, it appears that there was very little seepage of pollutants through the dike inclosing the land spoil area.

CHRONOLOGY

April 13, 1967

Season's dredging operations started in the Fox River.

May 4, 1967

Dredging continues in the river. Nine bottom sediment samples collected, seven from the river and one each from the sump and a scow. Eight water samples collected from river and sump area.

Hydrauli: dredge started operating in the sump area. May 18, 1967 Dredging operations continue in the river and sump area. July 17, 1967 Six bottom sediment samples collected from the sump area. Dredging operations continue on the river and sump area. July 18, 1967 Three water samples collected of overflow from the diked land spoil area. Dredging operations continue in the river and in the July 31, 1967 channel north of Grassy Island. Two water samples collected from the overflow from the land spoil area. Dredging operations in the river completed. Construction August 3, 1967 of dike in bay north of Grassy Island continues. August 17, 1967 Seven water samples collected at the diked land spoil area, one from the outlet pipe, two from the land spoil area and four from two ditches south of the spoil area. September 29, 1967 All dredging operations completed for the season. October 11, 1967 Nine water samples collected at the land spoil area, three from inside the dike and six in the two ditches south of the spoil area. There was no overflow from the area.

DISCUSSION OF DATA

Bottom Sediments. Figures 6 - 10 show graphically most of the data obtained from analyses of bottom sediments in the river and bay channel, the sump area in Green Bay and from one scow load of dredgings. This data has also been tabulated and is shown in Tables 1 and 3.

A Martin Wall a substitute of the

1

At River Mile (RM) 1, all the chemical and physical constituents in Figures 6 - 10, except total solids, are considerably lower than the concentrations shown at each River Mile immediately above and below this point. Although dredging operations started on April 13, 1967 in the vicinity of RM 1, the area was not sampled until May 4, 1967. It is apparent from the low concentrations shown that the sample at RM 1 was collected after the area had been dredged. Therefore, these data have been omitted from the following discussion.

Bottom sediments in the channel have a high chemical oxygen demand and high concentrations of oil and grease, total phosphorus, soluble phosphorus and total nitrogen. The concentrations were generally highest up river at RM 3 and decreased fairly uniformly into the bay to Bay Mile (BM) 3.

The following is a summary of May 4, 1967 bottom sediment data for the river and bay channel:

Parameter	Unit (Dry Weight)	Max1 mum	Minimum
Total Solids	% of sample	30.5	13.0
Volatile Solids	% of total solids	23.7	14.8
Oil and Grease	mg/k	46,200	4,600
Total Phosphorus-P	mg/k	6,500	2, <i>6</i> 83
Soluble Phosphorus-P	mg/k	138	18.6
Chemical Oxygen Demand	mg/k	300,000	179,000
Total Nitrogen	mg/k	10,130	4,950

Parameter	Unit (Dry Weight)	Maximum	Minimum
Nitrogen (NO3)	mg/k	16.2	9.9
Nitrogen (NH ₃)	mg/k	1,240	60
Organic Nitrogen	mg/k	9,450	4,020
Sulfide	mg/k	830	240
Phenols	micrograms/gram	7.8	0.75
Immediate Dissolved	Oxygen Demand mg/k	94,600	21,400

Bottom sediments were collected in the sump area in Green Bay on May 4, 1967 and again on July 17, 1967. River dredgings were deposited in the sump routinely after April 13, and the hydraulic dredge had operated intermittently in the sump after May 18. A comparison of the samples collected on May 4 and July 17 is presented below. As would be expected, the data are similar to those shown above for the river sediments. It should be noted that on July 17, only two samples were taken from within the sump area (see Figure 3), with two samples taken on either side. The data (Table 3) show higher values in the sump for only ammonia nitrogen and soluble phosphorus.

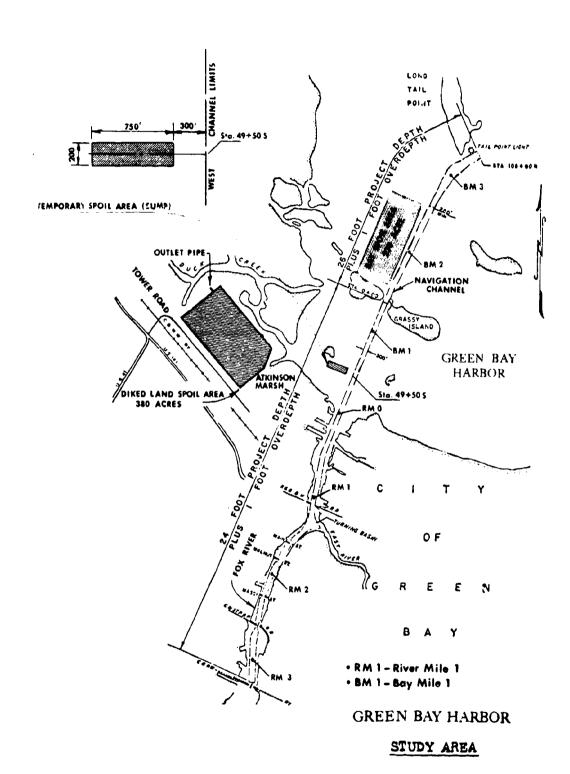
BOTTOM SEDIMENT DATA IN THE SUMP AREA

Param.ter	Unit (Dry Veight)	May 4, 1967 (one sample)	July 17, 1967 (Average of 6 samples)
Total Solids	% of sample	41.3	29.1
Volatile Solids	% of total solids	13.4	15.3
Oil and Grease	mg/k	4,200	13,855
Cotal Phosphorus-P	ng/k	1,910	1,165
Soluble Phosphorus-P	mg/k	45	7.8
Chemical Oxygen Demand	mg/k	122,000	167,350
Total Nitrogen	mg/k	2,690	•

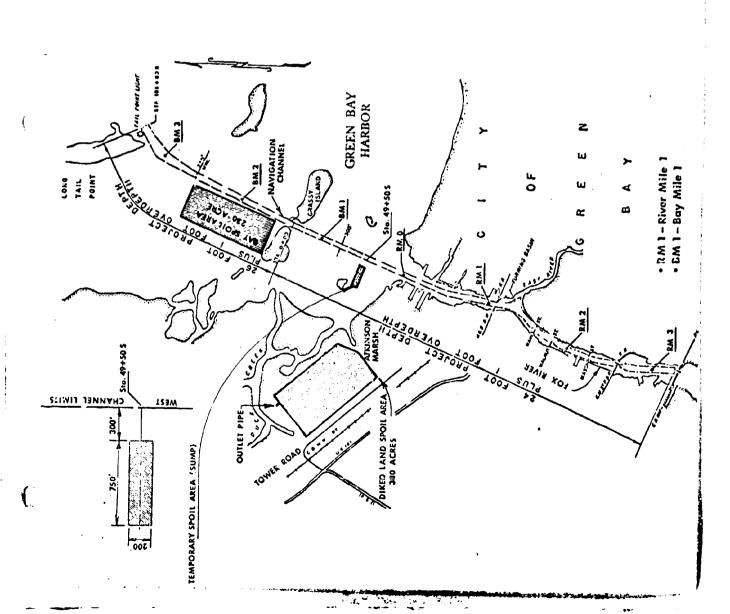
Parameter	Unit	May 4, 1967	701 אנע 17, 1967
	(Dry Weight)	(one sample)	(Average of 6 samples)
Nitrogen NO3	mg/k	4,4	8.5
Nitrogen NH3	mg/k	660	469
Organic Witrogen	mg/k	2,350	3,526

Water Quality. Figures 11-19 show graphically most of the data obtained from analyses of water samples collected from the river and bay channel, the sump in the bay and the diked land spoil area. This data is also tabulated and is shown in Tables 2 and 4-6.

Water Quality in the Sump Area. On May 4, 1967, water samples were collected in the river and at the sump area. Analyses of these samples, Table 2 and Figures 11-19 shows that water quality in the sump area after the disposal of dredging materials was much worse than water quality in the river or bay channel. The dredging operation had a noticeable effect on conductivity, alkalinity, turbidity, total phosphorus, nitrogen and suspended solids; all increased significantly as might be expected. There was a particularly significant increase in ammonia and total nitrogen which is to be expected when waters are first contaminated by organic matter in an anserobic state.


Water Quality in the Land Spoil Area. Water samples were collected at the land spoil area to determine the effectiveness of the dike to retain the various chemical and physical constituents in the dredging materials placed in the spoil area by the hydraulic dredge. Water samples were collected on July 17, 18 and 31 and on August 1 and 17, 1967. Analyses

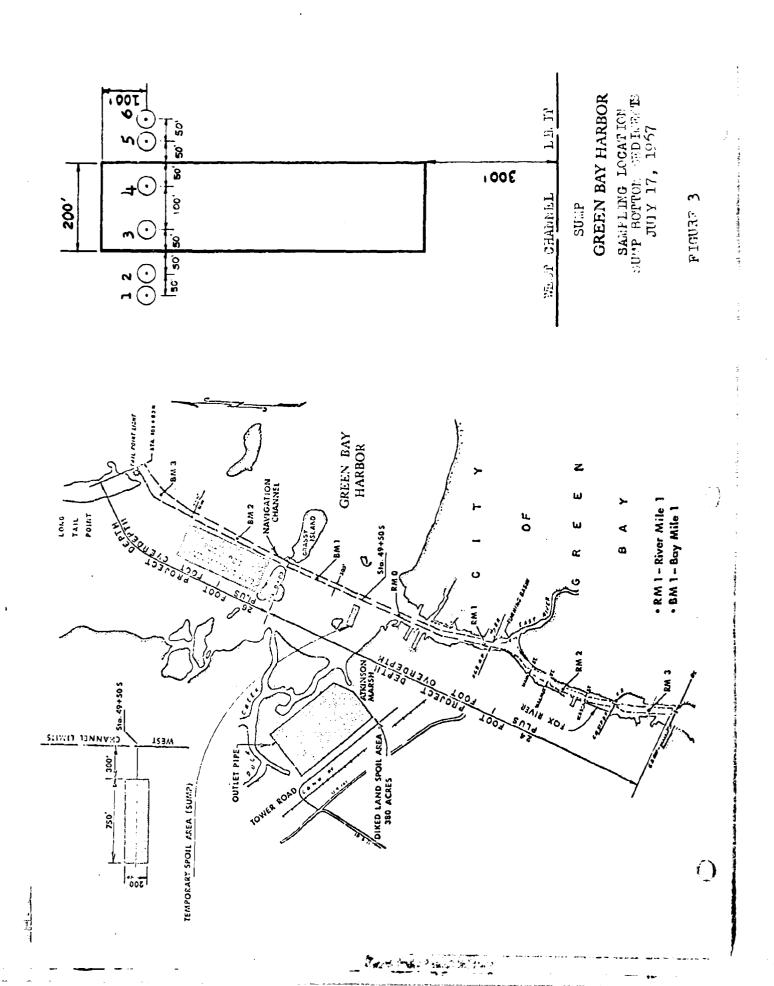
of these samples (Figures 11-19 and Tables 2 and 4-6) shows a considerable variation of effects on the quality of water discharging from the dike through the outlet pipe. The data collected on August 17, 1967 which compares water quality inside the diked area, at the overflow pipe, and in the ditches illustrates the effectiveness of the dike to retain the various constituents of the bottom sediments. A comparison of concentrations inside the dike to those flowing through the outlet pipe are summarised below:

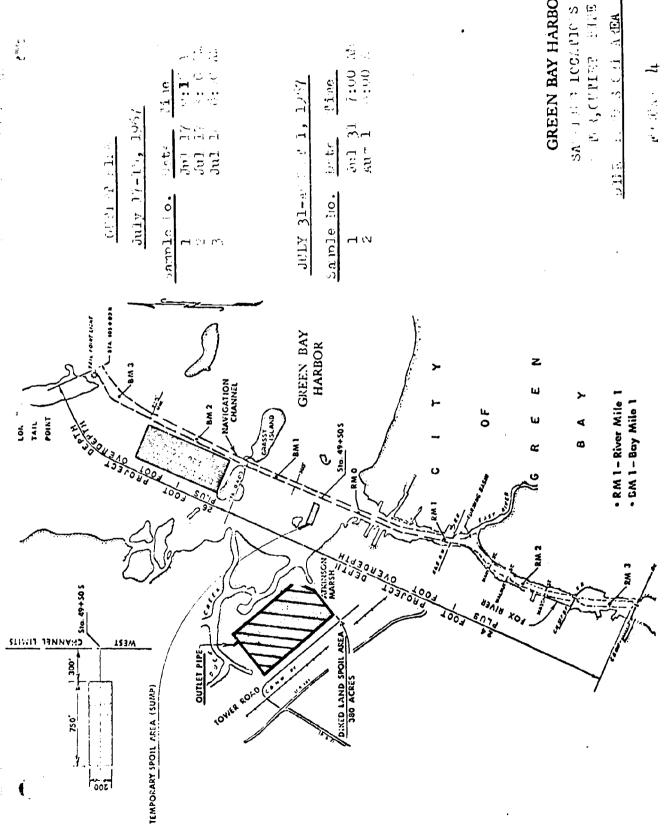

Parameter	Units	Inside Dike at 2 points	Outlet Pipe
Turbidity	APHA	24 - 10.0	9.0
Total Phosphorus-P	mg/l	0.59 - 0.28	0.72
Soluble Phosphorus-P	mg/l	0.18 - 0.12	0.18
Nitrogen NO3	mg/l	2.9 - 2.1	1.9
Nitrogen NH3	mg/l	5.8 - 4.7	6.9
Nitrogen, Organic	mg/l	4.2 - 3.6	6.1
Dissolved Solids	mg/l	386 - 420	406
Suspended Solids	mg/1	117 - 38	92
Chemical Oxygen Demand	mg/1	98 - 78	107

The above data shows that only turbidity was effectively controlled by the dike and that some of the chemical constituents of the dredgings such as total phosphorus, ammonia nitrogen, organic nitrogen and chemical oxygen demand were higher at the outlet pipe toan inside the dike. A comparison of chemical and physical concentrations inside the dike with those in the ditches on each side of Tower Road for August 17, 1967, show

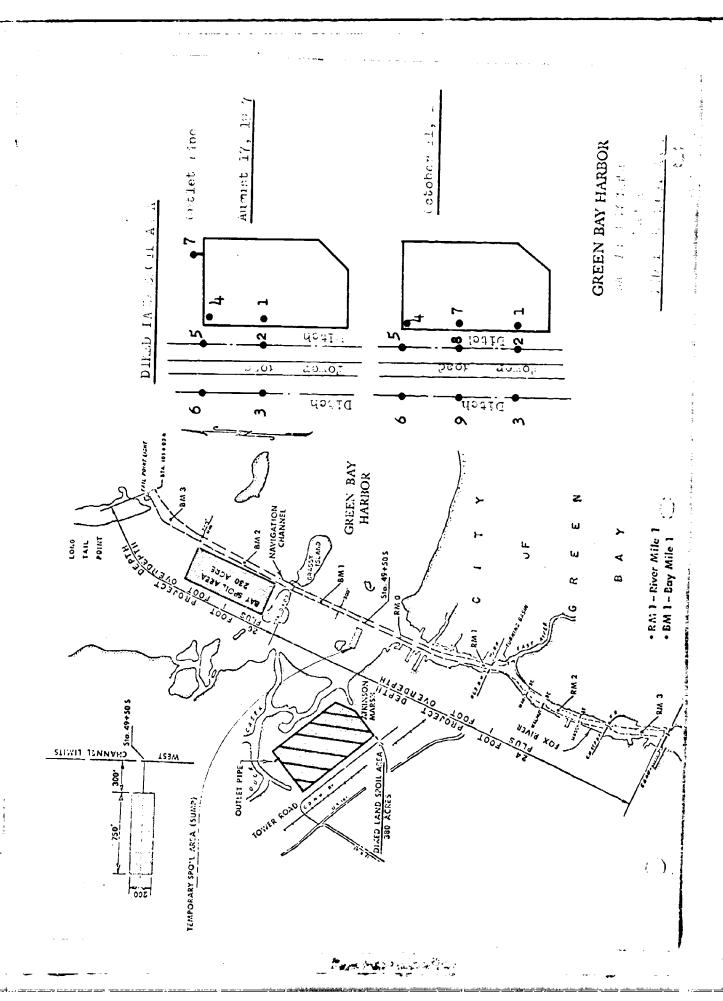
that with the exception of dissolved solids, the concentrations inside the dike were considerably higher than those in the ditches, indicating very little seepage of constituents through the dike. On October 11, 1967, 9 samples were collected both inside and outside the diked area (Figure 5). The analytical results are shown in Table 6. Excluding the results from sampling station number 6, the phosphorus and nitrogen levels, suspended solids and turbidity are all generally higher inside the diked area which indicates again the effectiveness of the dike in limiting seepage through the dike.

F IGURE

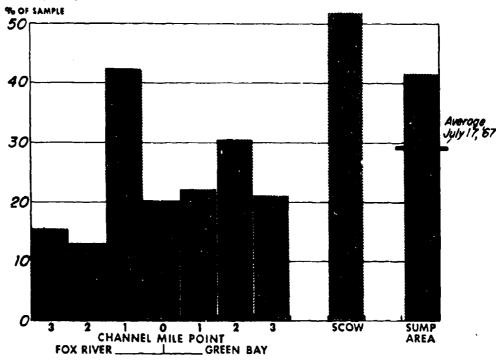

Amelysis	• •	• •	Sed Water Sed Water		
Location	2 Z	100		M M	Scor in River
Sample No.	٦ 8	സഷ	ww	~ @	6


GREEN BAY HARBOR

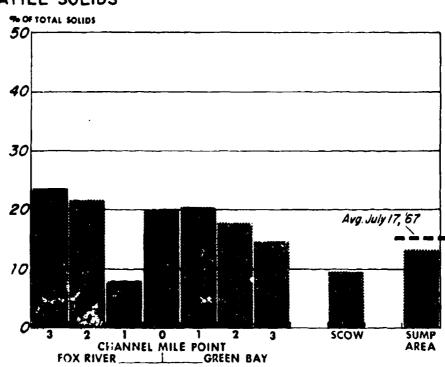
May 4, 1967


Bottom Sediments & Water

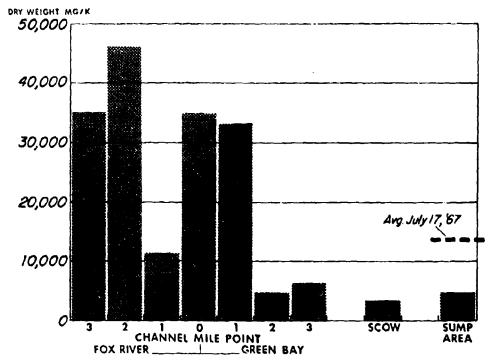
TATATATE O



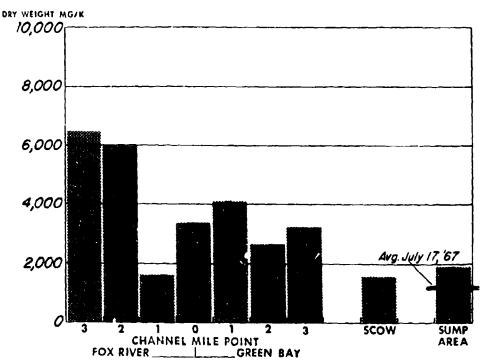
GREEN BAY HARBOR



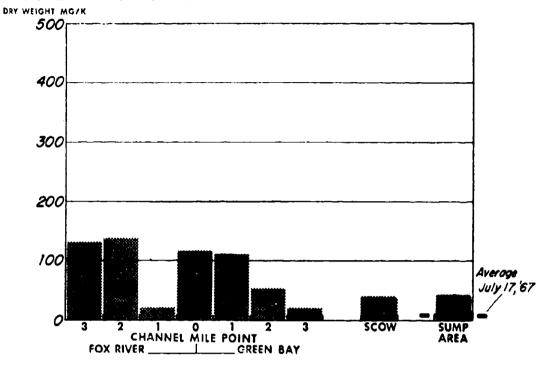
FOX RIVER-GREEN BAY SEDIMENT DATA, May 4, 1967_____



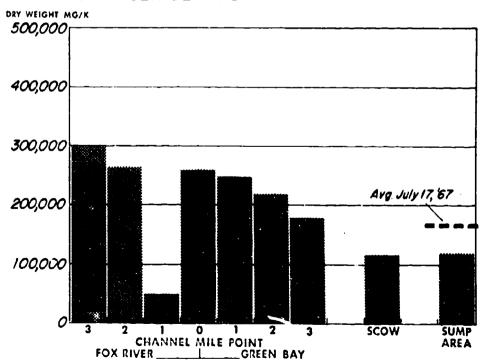
VOLATILE SOLIDS



FOX RIVER-GREEN BAY SEDIMENT DATA, May 4, 1967.....

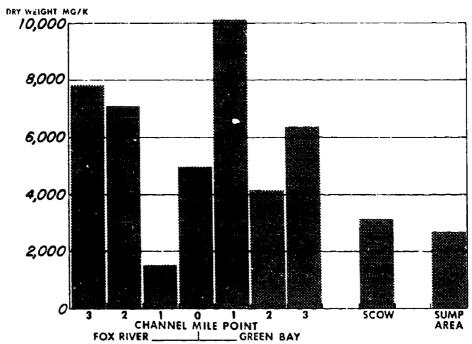


TOTAL PHOSPHORUS - P

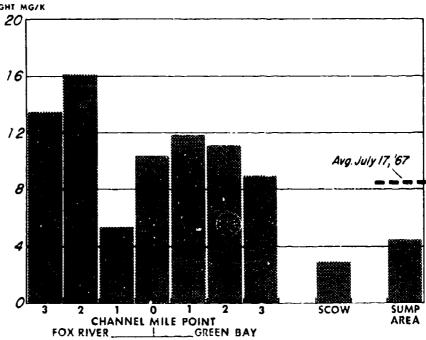


FOX RIVER-GREEN BAY SEDIMENT DATA, May 4, 1967

SOLUBLE PHOSPHORUS - P


CHEMICAL OXYGEN DEMAND

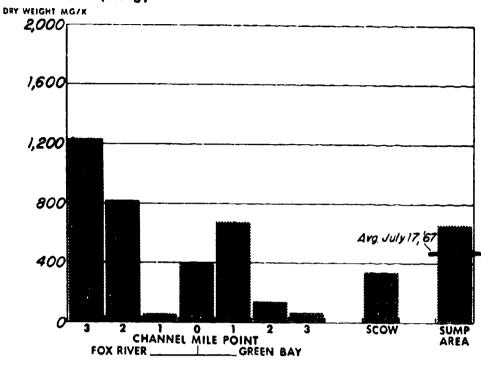
1 1 1 1 1 E


FOX RIVER-GREEN BAY SEDIMENT DATA, May 4, 1967.....

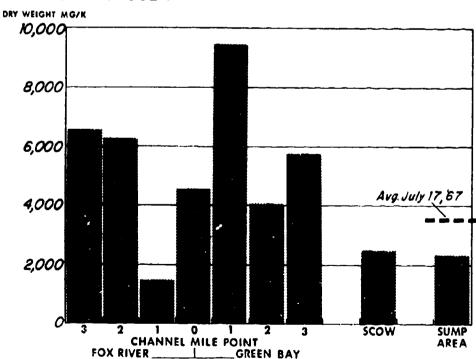
TOTAL NITROGEN

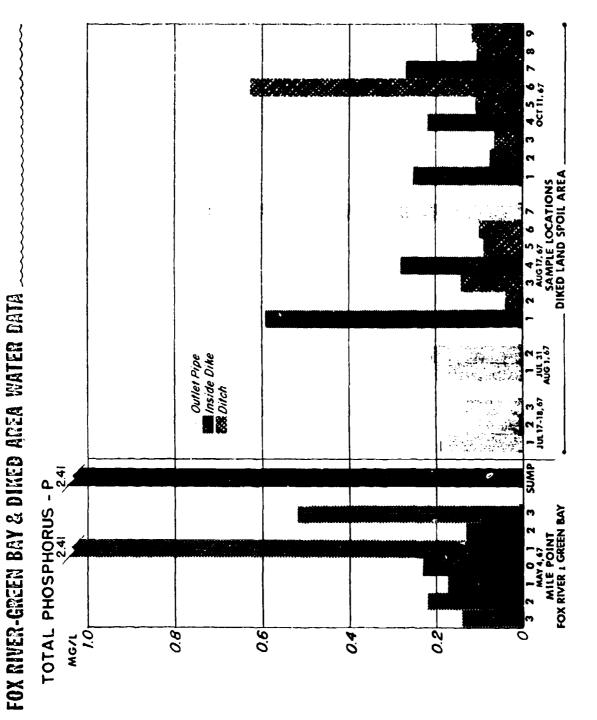
NITROGEN (NO₃)

DRY WEIGHT MG/K



3177 N Q


_ Protection & Company of the


FOX RIVER-GREEN BAY SEDIMENT DATA, May 4, 1967_____

ORGANIC NITROGEN

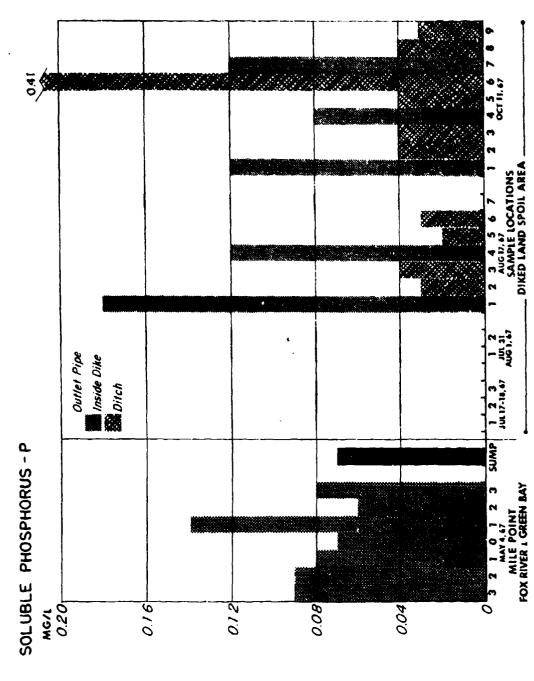
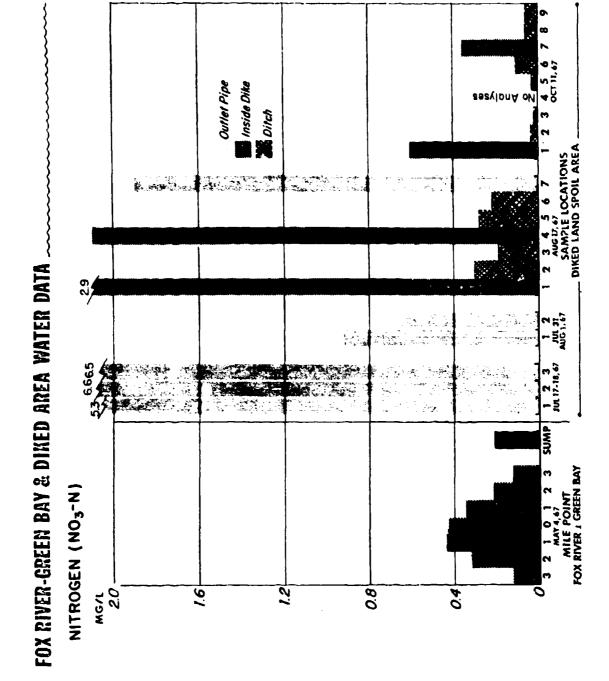
FI

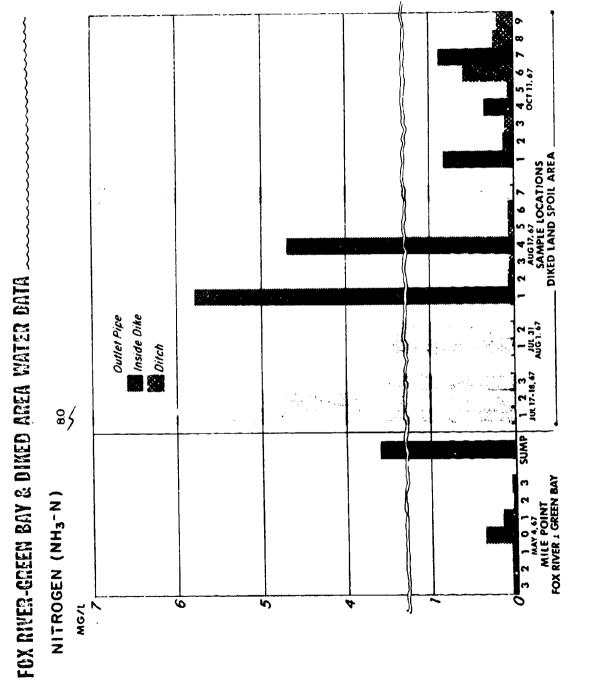
1 1 3 4 5 6 7 1 Aug.7.67 SAMPLE LOCATIONS DIKED LAND SPOIL AREA fox river-green bay a diked area water data Inside Dike Outlet Pipe 1 2 3 JUL 17-18, 67 APHA UNITS TURBIDITY 20 10 5 15

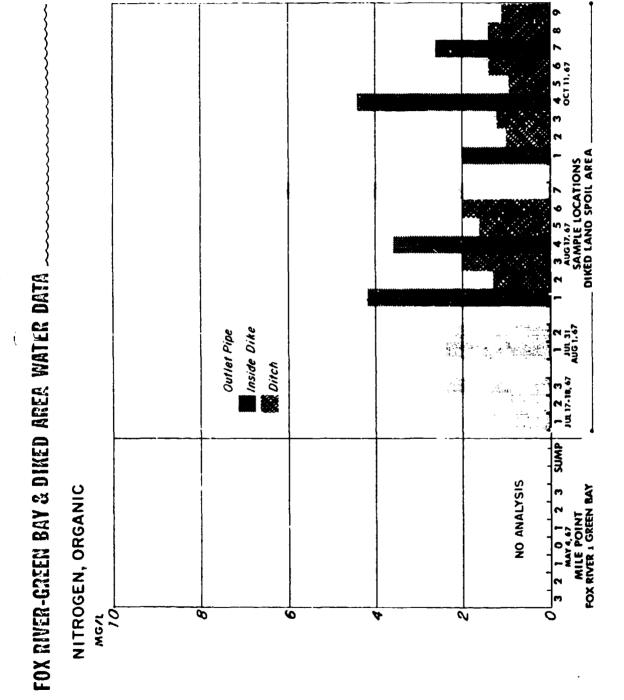
- Commence of the state of the

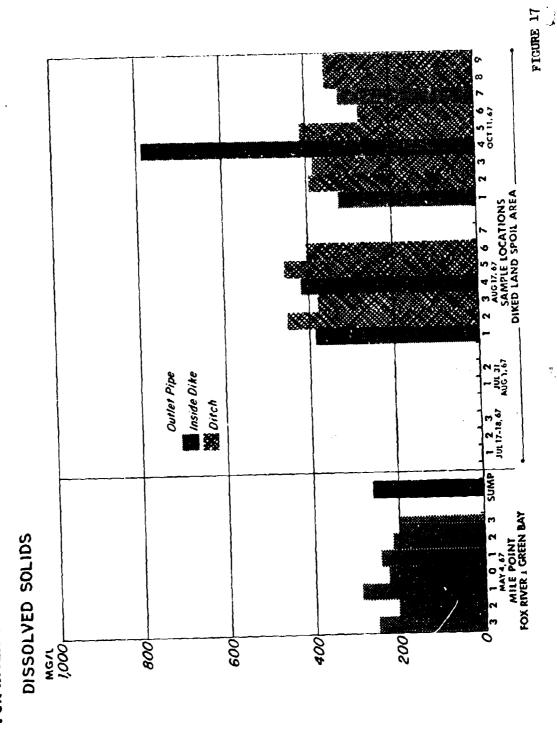
7

7

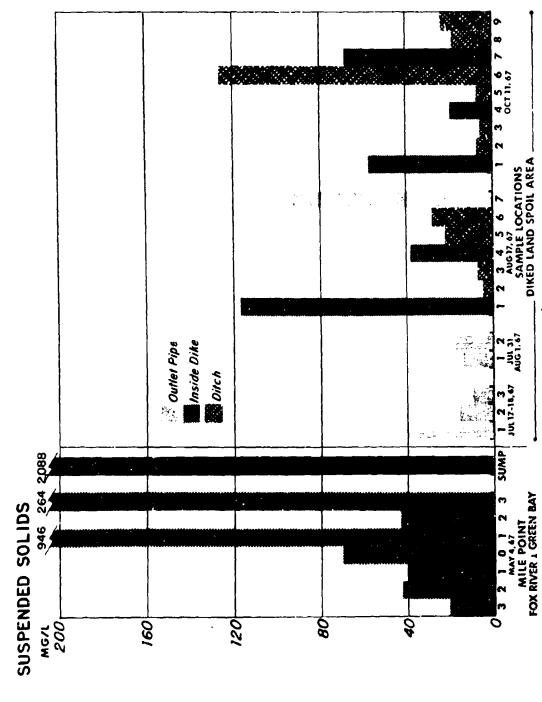




FIGURE 15


Û


The transfer of the second

0



FOX RIVER-GREEN BAY & DIKED AREA WATER DATA

FOX RIVER-CREEN BAY & DINED AREA WATER DATA

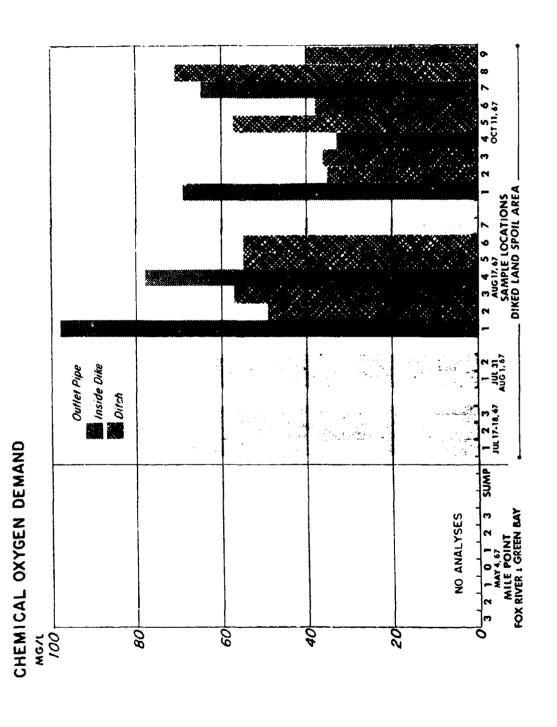


FIGURE 19

()

ANALYTICAL "TULTS

GREEN BAY BOTTOM SEDIMENT SAMFLES (Continued)

SAMPLING DATE - MAY 4, 1967

See.	Loca-	Organic	ń	C.0.D.		011 and	eri.	Sulfide	je Je	Phenols	80	IDOD	
ple No.	tion	Nitrogen mg/k	n Sen	ag/k		Grease mg/k		mg/k	į	3/8m	Ž	ang/k tot	Ž
		Wet	Dry	Wet	Dry	Wet	DEA.	Wet	ury	1 Mg F	217		,
٦.	Fox R.	1,030	1,030 6,580	700,700	300,000	5,500	35,300	130	830	1.28	7.8	12,800	82,100
~	Fox R.	810	810 6,260	34,600	266,000	6,000	46,200	911	890	0.39	3.0	12,300	009,46
er.	Fox R. Mile 1	0€9	1,480	20,200	47,600	7,800	4,800 11,300	134	88	٥.14	3.3	9,100	21,400
4	Fox R.	920	055,4	52,600	261,000	7,100	35,100	139	869	0.45	2.2	13,500	96, 900
\$	Green Bay	2,080	9,450	54,500	248,000	7,300	33,200	œ1	550	0.72	3.3	15,300	69,500
9	Green Bay		1,230 4,020	66,600	218,000	1,400	7,600	72	240	0.23	0.75	14,800	148,600
7	Green Bay		1,220 5,770	37,900	179,000	1,400	6,600	17	330	0.72	3.4	13,800	65,000
&	Sump, Green Bay	970	970 2,350	50,400	122,000	1,700	4,200	134	8	0.59	1.4	13,900	33,600
6	Scov	1,290	1,290 2,490	97,160	000,711	1,900	3,600	328	90	0.22	0.42	16,400	37, ⁴ 00

*Hexa ne Analysis

Table 1

ANALYTICAL RESULTS

GREEK BAY BOTTOM SEDIMENT SAMPLES

SAMPLING DATE - MAY 4, 1967

Saus- ple No.	Sam- Loca- ple tion No.	Total Solida % of Sample	Vol. Solids \$ of Total	Total Phosphorus -P ng/k	orus -P	Soluble Phospho mg/k	Soluble Phosphorus-P ng/k	NO ₃ - Nitrogen mg/k	gen	NH ₃ - Nitrogen mg/k	ŭe.	Total Nitrogen mg/k	en
		.	Solids	Wet	Dry	Wet	Dry	Vet	Dry	Wet	Dry	Wet	Dry
ત	Fox R. Mile 3	15.6	23.7	1,014	6,500	20.5	132.0	2.1	13.5	194	1,240	1,220	7,82
CV	Fox R. Mile 2	13.0	21.7	779	5,992	18.0	138.0	2.1	16.2	107	820	980	7,080
m	Fox R. Mile l	42.5	8.0	169	1,627	9.1	21.5	2.3	5.4	19	50	059	1,53C
4	Fox R. Mile O	20.2	20.0	189	3,374	23.4	116.0	2.1	10.4	81	004	1,000	4,950
2	Green Bay Mile l	22.0	20.3	903	η0τ'η	24.1	109.5	5.6	11.8	641	8 9	2,230	10,13
9	Green Bay Mile 2	30.5	17.6	818	2,683	16.3	53.5	3.4	11.1	143	140	1,270	4,160
7	Green Bay Mile 3	21.2	14.8	η69	3,276	3.9	18.6	2.1	6.6	121	009	1,350	6,370
80	Sump in Green Bay	41.3	13.4	789	016,1	18.6	45.0	1.8	4.4	143	340	1,110	2,690
6	Scow	52.1	9.5	815	1,565	8.5	39.5	1.5	5.9	346	99	1,640	3,150

(Continued)

Table.1

AMLYTICAL RESULTS

3

ORBEN BAY WATER SAMPLES

SAMPLING DATE - MAY 4, 1967

							•						
Ple No.	E tion	Con- duc- tlwity	Alba- 11n- 1ty	Turbi- dity APHA	Total Phos- phorus	301. P	NO3- N1 tro- gen	MH3- M1tro- Gen	Total Nitro- Gen	Dis- solved Solids	Sus- pended Solids	Chlor- 1de	Sul- fate
			1/8	unite	1/8	186/1	mg/1	mg/ 1	■ g/1	mg/1	1/84	mg/1	mg/1
ત	Fox R. Mile 3	8,	टार	13.5	0.14	0.09 0.13	0.13	0.05	۵.۲	7 52	ส	97	æ
N 	Fox R.	88	ाडा	n.5	0.83	0.09 0.32	o. %	0.05	1.3	₹0 <i>2</i>	£4	15	क्ष
ω	Fox R.	370	971	17.0	0.17	0.08	₹ 1 .0	0.05	1.3	88	O 1 1	13	33
4	Fox R.	350	113	17.0	0.23	0.07	0.43	0.38	3.1	526	70	19	£ 1 3
2	Green Bay	370	140	300.0	2.41	0.14	0.35	0.17	18.0	445	946	18	ま
9	Green Bay	330	113	8.0	0.13	90.0	0.23	0.04	1.3	217	53	15	ま
-	Green Bay Mile 3	512	101	9.0	.52	0.08	0.13	90.0	1.2	88	衰	п	83
∞	Sump Green Bay	007	8 8	740.0	2.41	0.07 0.19	0.19	3.60	53.0	260 2,	2,086	ฆ	94

ANALYTICAL RESULTS

GREEN BAY BOTTOM SEDIMENTS SAMPLES - SUMP AREA (mg/k)

July 17, 1967

Station	% Total Solids	% T. Vol.	NH ₃ .	-N Dry	NO Wet	3-N Dry	Org Wet	Dry	T.Sol.	Phos- phorus- P
1	27.0	14.8	100	370	1.6	5.9	1085	4020	1.06	3.8
2	27.7	16.7	97	350	2.2	7.9	913	3300	1.66	6.0
3	26. 0	18.2	194	745	3.2	12.3	1056	3955	3.11	12.0
4	22.2	17.8	150	o?5	2.0	9.0	960	4325	2.94	13.4
5	32. 6	14.6	117	360	3.6	11.0	1008	3090	2.16	6.5
6	<u>39 · 3</u>	9.4	<u>131</u>	<u>315</u>	2.0	<u>5.1</u>	<u>959</u>	2465	<u>01</u>	_5.0
Average	29.1	15.3		469		8.5		3526		7.8

Station	Total P	hosphorus-P	COD		011 &	Grease*
	Wet	Dry	Wet	Dry	Wet	Dry
1	408	1509	48,200	178,500	6,930	25,667
2	301	1088	37,500	135,100	4,270	15,411
3	284	1091	36,000	138,500	2,815	10,827
14	408	1835	37,100	167,000	1,465	6,599
5	301	924	91,600	281,000	6,510	19,963
6	213	541	40,800	104,000	1,835	4,663
Average		1165		167,350		13,855

*Hexane Analysis

ANALYTICAL RESULTS

(

Ą

GREEN BAY WATER SAMPLES -- OUTLET PIPE, DIKED LAND SPOIL AREA (mg/1)

JULY 17-18, 1967

				Phenol **	7	ю
Turb.*	0.4	5.0	5.0		5.0	3.6
QO		19	63		2	65
Total Phosphorus -P	0.19	0.13	0.13		0.20	0.21
T. Sol. Flos- phorus-P	21 .0	o. u	o. u		91.0	0.16
Org-N	1.3	6.0	5.9	1961	2.4	2.2
NO.	5.3	9.9	6.5	31 - AUGUST 1, 1967	0.92	0.71
N-Z-EN	8.0	5.0	3.5	31 - AU	3.5	3.6
Susp.	9	16	OT	JULY	47.	18
Dis. Solids	8 8	366	%		350	3 E
3	71/1	21/1	7/18		1/31	1/8
and	9:15 a.m. 7/17	3:00 p.m. 7/17	8:00 8.m. 7/18		7:00 p.m. 7/31	8:00 a.m. 8/1
Time	9:15	3:00	8:00		7:00	8:00
Station Time and Date	7	α	ဗ		7	N

^{*} Turbidity expressed in APHA units (equal to Jackson units)

Table 4

ANALYTICAL RESULTS

GREEN BAY WATER SAMPLES -- DIKED LAND SPOIL AREA (mg/l)

AUGUST 17, 1967

Sample	Tine	MH3-N	NO3-N	Org-N	T. Sol. Phos- phorus-P	T. Sol. Phos. Total phorus-P Phosphorus-P	Dis. Solids	Susp.	Turb.*	GOD
1 - Dike (Inside)	12:00 N	5.8	5.9	4.2	0.18	0.59	38	711	₹	8
2 - Ditch along Dike	=	0.08	0.30	1.3	0.03	40.0	452	4	1.1	61
3 - Ditch across Road	E	90.0	0.19	1.9	9.0°	4۲.0	378	7	2.5	51
4 - Dike (Inside)	2:00 P.M.	2.4	2.1	3.6	टा .0	0.28	027	86	.01	81
5 - Ditch (along Dike)	=	0.07	0.26	1.6	0.02	60.0	458	8	9.0	55
6 - Ditch across Road	r	0.07	0.22	2.0	0.03	0.10	1403	58	10.	55
7 - Dike - Outlet Pipe	11:00 A.M.	6.9	1.9	6.1	0.18	0.72	901	8	9.0	107

* APHA Units = Jackson Candle Turbidity Units

Table 5

the constitution of

CREEN BAY
ANALYTICAL RESULTS OF WATER FROM DIKED LAND SPOIL AREA
mg/l

OCTOBER 11, 1967

Type of Sample	• •				WATER				
Station	ſ	5	3	4	5	6	7	8	9
Parameter T. SolP	0.119	0.037	0.039	0.036	0.044	0.411	0.123	0.040	0.032
Total-P	0.252	0.071	0.063	0.224	0.109	0.629	0.273	0.105	0,119
ин3-и	0.84	0.12	0.10	0.36	0.07	0.59	0.90	0.23	0.20
1103-11	0.61	0.03	0.02	-	0.03	0.11	0.36	0.05	0.06
Org-N	2.0	1.0	1.2	4.4	0.91	1.4	2.6	1.4	1.1
Sus. Solids	. 57	7	5	19	7	126	6 8	18	24
Dis. Solids	327	393	385	789	415	274	324	353	354
Turbidity	27	1.4	4.0	4.5	0.7	9.0	14	12	7.7
COD	69	35	36	33	57	38	65	71	40

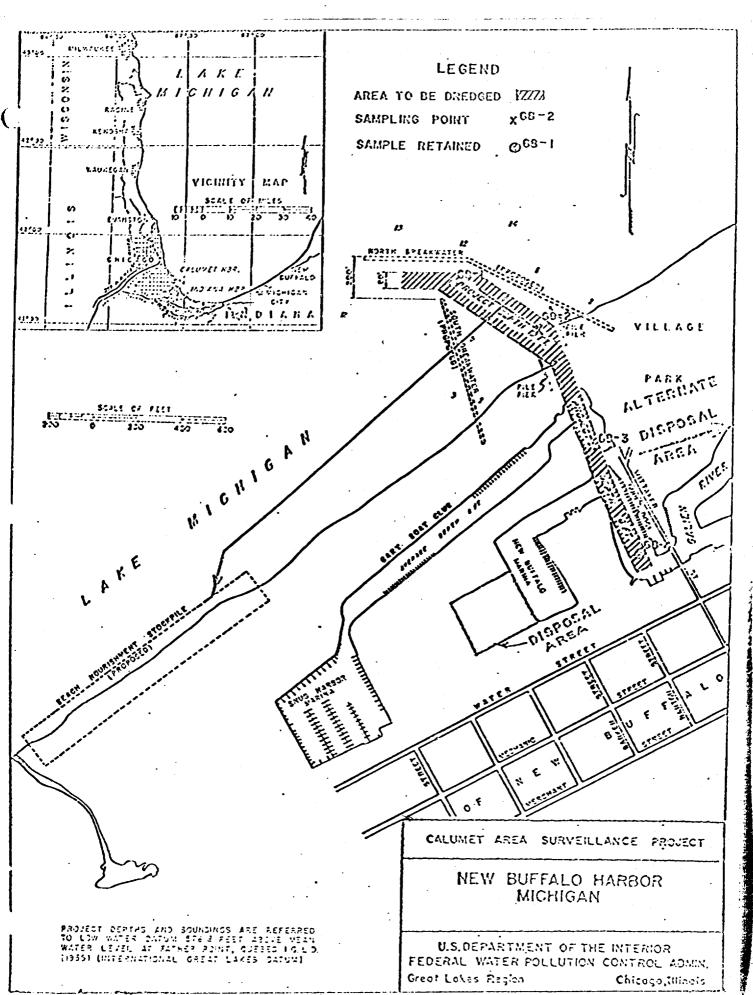
APPENDIX A 10

REPORT ON THE DECREE OF POLLUTION OF BOTTOM
- SEDIMENTS IN NEW BUFFALO HARBOR, MICHIGAN
JUNE 4, 1968

JUNE 1968

Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office

Best Available Copy


In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled New Buffalo Harbor, Michigan on June 4, 1968. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorowicki - Boat Operator-Sampler

CONCLUSIONS

- 1. The bottom sediments outside of the mouth of the Galien River consist of sand substantially free from pollution.
- 2. The bottom sediments in the Galien River in the area scheduled for dredging are slightly to moderately polluted.
- 3. The quality of the water entering Lake Michigan from the Galien River was good and the river did not constitute a serious source of pollution to the lake.

DESCUSSION OF RESUMES

The field observations of the sediment samples indicated an unpolluted sandy bottom in the outer harbor at Stations NEW 68-1 and NEW 68-2 and a darker sand with some pollution further up the Galien River at Stations NEW 68-3 and NEW 68-4. (see Table I). The river itself appeared to be substantially free of pollution. Fish were observed jumping in the river and a pair of ducks were swimming on it near Station NEW 68-4.

The chemical analyses confirm these observations. The sand at Station NBUF 68-1 had low concentrations of COD, Total Phosphorus and sulfide. The percent volatile solids was also very low. There was a trace of cyanide and some oil and grease (see Table II). These concentrations were far lower than at other harbors on the lake. At Station NBUF 68-4 there was a moderate amount of cyanide and oil and grease. Phosphorus approached a moderate level but COD, percent volatile solids, sulfide were all low.

The vater quality at the mouth of the Calien River (Station NBUF 68-2) meets the criteria established by the Calumet Area Conferees for inner harbor basins (see Table III). It is recognized that these criteria cannot be officially applied at New Buffalo harbor and they are used only for comparison and evaluation purposes.

Color photographs were taken of all of the bottom samples observed.

These are on file at the Chicago Program Office of the Federal Water Pollution

Control Administration.

DABLE I

MIELD OBSERVATIONS NEW BUFFALO HARBOR

JUNE 4, 1968

Station NEUF 68-1	Depth 10'	•
	Clean sand, various color stones,	no odon
	sample retained.	

- Station IBUF 68-2 Depth 5' Sandy gravel, flat stones, about 1" square 1/2" thick, no olor.
- Station NEUF 68-3 Depth 9' Grey sand, no odor clam shells, one sludgeworm
- Station NAUF 68-4 Depth 8'
 Dark grey silty sand, little odor decayed wood, few sludge worms

TABLE III

RESULES OF ANALYSIS OF ECTION SEDELERES COLLECTED AS HEM EUROPALO HARBOR, JULIS 4, 1968

• • :

Parameter .	Station NEUR 68-1	Station NOUP 68-4
% Total. Solids	85.34	69.21;
% Volatile Solids	1.18	2.86
COD	8h02 ng/kg	33,12 8 m ² /kg
Total. Phosphorus	9.76 mg/kg	90.2 mg/kg
NH3N	•	23. 1 mg/kg
	5.4 mg/mg	4.6 mg/kg
Org. N	•	20 68 ng/kg
Phenol.	NF	0.46 mg/kg
Oil & Grease	521 mg/kg) 206
Cyanide	0.01 mg/lg	0.16 ng/kg
Sulfide	NF	16 mg/kg
Total Iron	4718 mg/YG	6990 ng/kg
Copper	3.2 mg/kg	4.6 應/增
Cadmium	0.38 rs/ks	0.10 ng/kg
Nickel	8.3 mg/kg	23 mg/kg
Zine	•	27 ng/kg
Iead	9.4 mg/kg	16 mg/kg
Chromium	9.4 mg/kg	17 mg/kg

All results reported on DRY basis.

NF - None found

TABLE TOO

RESULES OF AMALMSTS OF VALUE SAMPLES COLLECTED IN NEW BUFFALO HARBOR June 4, 1968

Station NEUF 68-2

Parameter

Temp OC	1 6
pH	9.1.
Suspended Solids	$l_1 mg/1$
Discolved Solids	225 "
Turbidity	0.03 units
MBAS	0.03 mg/l
Chloride	7.5 "
Sulfate	25 "
COD	7.8 "
Total Phosphorus	0.004 "
№3-11	0.07 "
N02+1103-11	0.35 "
Org. II	0.35 "
Fhenol	1/بير 5
Oil and Grease	2.5 政/1
Cyanide -	TE "
·Total Iron	0.56 "
Copper	0.07 "
Cadenium	NF "
Nickel	0.08 "
Zine	0.0 6 "
Lead	0.01 "
Chronium	0.02 "

^{*} Turbidity is expressed in APHA units, equivalent to Jackson units.

NF - Not detected within sensitivity of test.

INCAPPOR OF SAMPLEIG PORTES THEY EUPPALD HARBOR

June 4, 1968

NEUF 68-1 425 feet northwest of end of south pile pier.

NEUF 68-2 Mid-channel at outer end of south pile pier.

NBUF-68-3 Mid-channel 150' upstream of Snug Harbor Marina entrance.

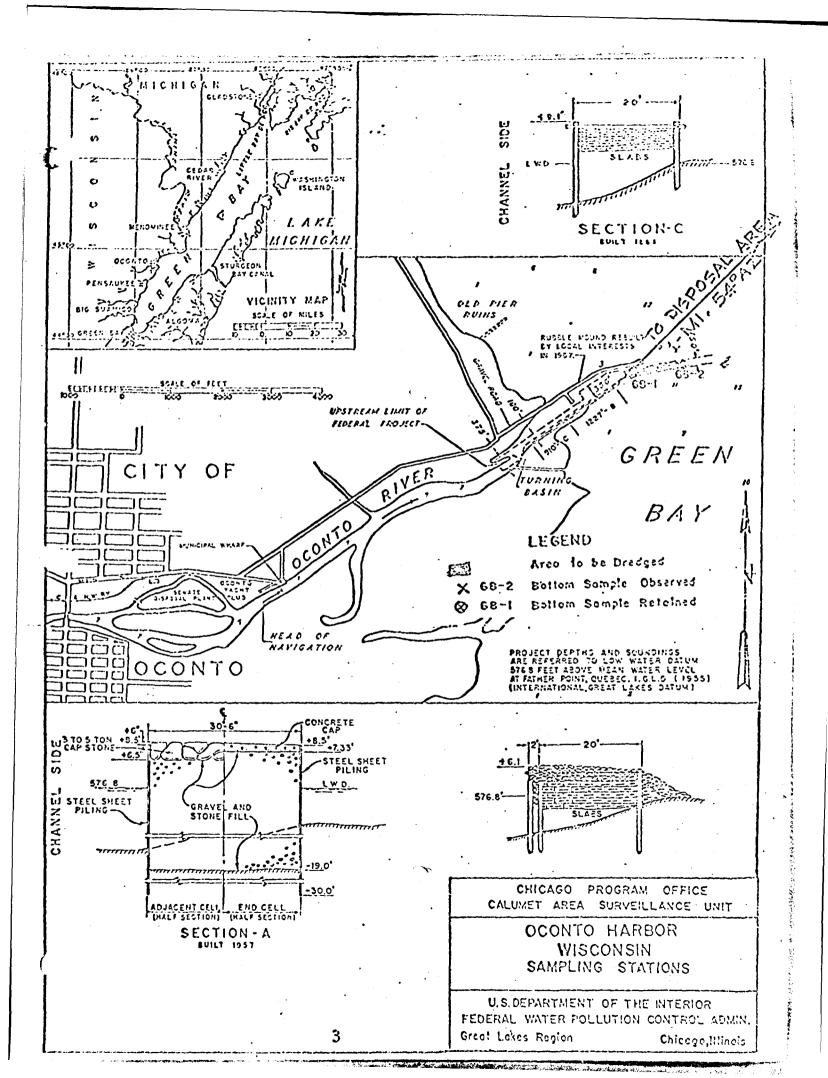
NBUF 68-4 Mid-channel 375' upstream of entrance to New Buffalo Marina.

APPENLIX A 11

REPORT ON THE DEGREE OF POLLUTION OF DOTTOM SEDIMENTS IN OCCURN HAREOR

May 22, 1968

July, 1968


Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled Oconto Marbor on May 22, 1958. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Senitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorovicki - Boat Operator - Sampler

CONCLUSIONS

- 1. The sediments in the area to be dredged at the mouth of the Oconto River consist primarily of sand and are relatively unpolluted.
- 2. The disposal of the material in the open waters of Green Ray would not constitute a serious source of phosphorus or other pollutants to Lake Michigan.
- 3. The water entering Green Pay from the Oconto River on May 22, 1968 substantially met reasonable criteria and did not constitute a serious source of pollution to Green Pay.

DESCUSSION OF RESULTES

The field observations indicated that the sediments in the area to be dredged consist primarily of sand and are very lightly polluted, if at all. Charcoal and wood chips at Sta. 000H 68-1 indicated the possible presence of organic material but the sediment was very sandy and did not appear to be seriously polluted. Several fish were caught by fishermen in the Oconto River while the samples were being collected (see Table I). The water also appeared to be free of pollution, it was clear and had no floating algae or solids. It had a very dark brown color, however.

Color photographs were taken of each bottom sample observed and are on file at the Chicago Program Office of the Federal Water Pollution Control Administration.

The results of the analysis verify the field observations. Except for traces of copper and chromium concentration all of the parameters were low in comparison with sediments from other Lake Michigan harbors (see Table II).

Sediments from Station OCON 68-1 were analyzed. This is presumed to be the most polluted area scheduled for dredging. Percent volatile solids was very low at this point and no oil and grease or sulfide were found within the sensitivity of the tests. All of the other parameters were within the range that indicates relatively slight pollution.

The disposal of this material in the open waters of Green Pay would not constitute a significant source of phosphorus or other pollutants to Lake Michigan.

The quality of the water discharging from the Oconto River to Green Fay was also checked. The water substantially not the criteria adopted by the

Calumet Area Conferees for inner harbor basins (see Table III). It is recognized that these criteria cannot be officially applied to Oconto Harbor, they are used herein for comparison and evaluation purposes only. Table III shows that all the criteria were complied with except for phenols and ammonia nitrogen.

5

TABLE I

PIDIP ORSERVAPIOUS OF DEEDOM SED. MEHUS OCORTO HARROR May 22, 1968

Sta. 000N 68-3. Depth 10'

Sand; black specks - some charcoal or wood

chaps - no odor

Sta. 0001 68-2 Depth 16'

Dark brown sand - black specks - no odor

WHEN II

RESUMES OF ANALYSIS OF MOMENTS COMMENSED AT OCCUPO HARRON May 22, 1968

Parcesotor	Station 000N 68-1
& Potal Solids	78,37%
\$ Volatile Solids	0.91%
COD	11,432 mg/kg
Total Phosphorus	79.7 ng/kg
1103-11	5.1 rg/kg
Phenol	0.24 ng/ng
Oil and Greade	NF
C yanide	0.05 ng/kg
Sulfide	NF
Total Iron	1 582 mg/kg
Copyrin	13 mg/kg
Cadmina	N F
Nickel	7.0 mg/kg
. Zinc	29 mg/kg
Lead	3. 8 mg/kg
Chromium	11 mg/kg

. All results reported on DHY basis.

NF- None found within sensitivity of test.

TABLE COL

RESULES OF ARMISES OF WATER SAMPLES COLLECTED AT COORD RARROR, May 22, 1968

Station 000N 68-1

Parameter		Criteria
Temp. OC	14	not more than 29.6
plI	0.8	within range 7.5-9.0
Suspended Solids	3 mg/1.	•
Dissolved Solids	1 9 mg/1.	not more than 230 mg/l
Turbidity	0.5 units	
. MBAS	0.09 mg/l	not more than 0.30 mg/l
Chloride	6.0 mg/l	not more than 30 mg/l
Sultate	1 2 ng/1	not more than 75 mg/l
COD	56 mg/1	
Total. Phosphorus	0.025 mg/J.	not more than 0.033 mg/l.
IH ₃ -N	0.32 mg/l	not more than 0.12 rg/l
NO ₂ -NO ₃ -N	0.08 mg/l	
Org. N	0. 83 rg/l	
Phenol	9 pg/1	not more than 5 pg/1
Oil and Grease	4.5 mg/1	
C yanide	NF .	not more than 0.1 mg/1
Total Iron	0.60 mg/l	
Copper	0.32 mg/l	
Cadmium	NF	
Nickel	0.08 mg/1	
Zinc	0.07 ng/1	
Lead .	0.03 ng/l	•
Chromium	0.02 mg/l	

^{*}Turbidity is expressed in APHA units, equivalent to Jackson units. NF - not detected within sensitivity of test.

LOCATION OF SAMPLING POINTS OCCIONO HARBOR, May 22, 1968

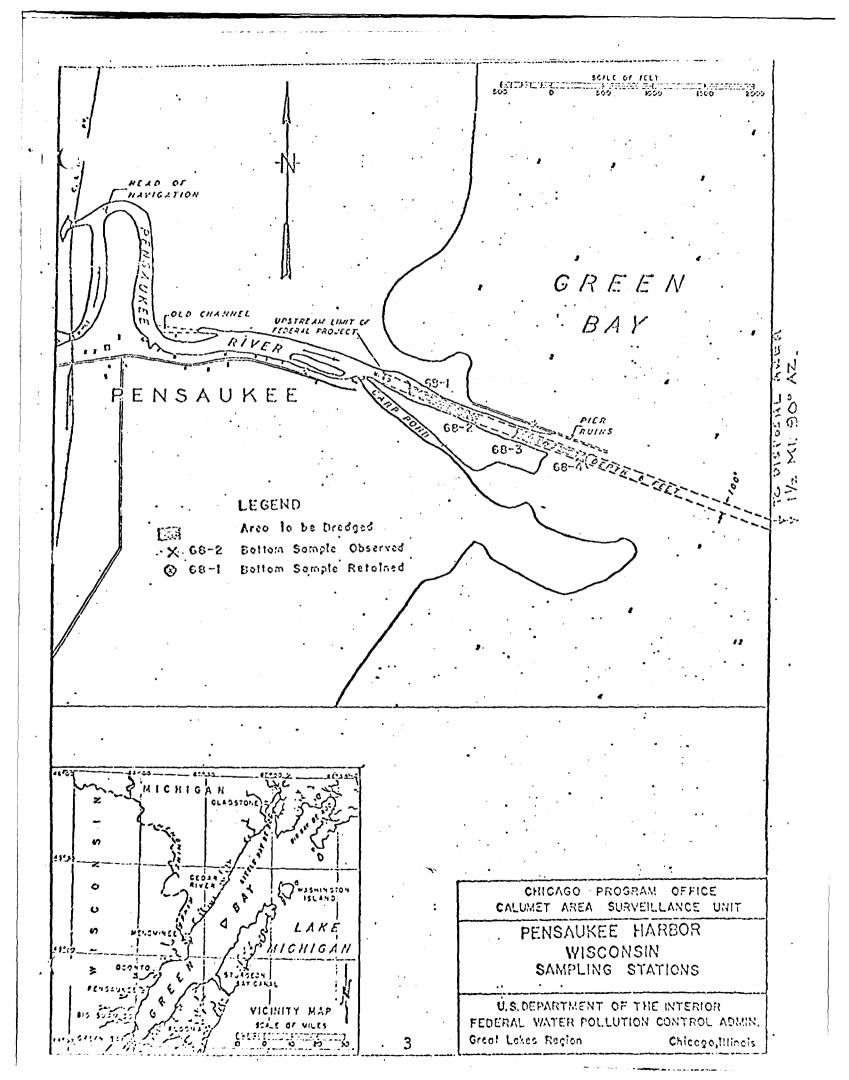
100 feet south of North Pierhead Light. lat. hh0-53'-57" long. 870-h9'-16" Sta. 000ii 68-1

900 feet east of North Pierhead Light. Lat. 1/1/2-531-58" Long. 870-1/91-05" Sta. 000N 68-2

APPENLIX A 12

REPORT ON THE DEGREE OF POLICETON OF EXITOM SEDUCTIONS IN PRISAUREE HARBOR May 21, 1968

300.0 RMC


Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dradged by the Corps of Engineers, personnel of the Chicago Program Office sampled Pensaukee Europe on May 21, 1958. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Powden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorowicki - Boat Operator - Sampler

COMPUNISHED

- 1. The bottom sediments to be dredged at Pensaukee Harbor consist primarily of sand with some silt. They are not seriously polluted but have a moderately high concentration of total phosphorus.
- 2. The waters entering Green Pay from the Pensaulce River mubstantially met reasonable water quality criteria on May 21, 1968 and did not constitute a major source of pollution to Lake Michigan.

DESCUSSION OF RESUMES

The field observations indicate that the bottom sediment in the areas scheduled for dredging at Pensaukee Harbor consist of a dark brown sand with some silt and that they may be moderately polluted but are not heavily polluted (see Table I). The chambells at Stations PEIS 68-1 and PEIS 68-2 could be from pollution tolerant or pollution sensitive species. In any case they are evidence that the bottom sediments are not as seriously polluted as at some other harbors to Lake Michigan. At Station PEES 68-2 a four-inch bullhead was caught inside of the dredge. It was released unharmed. Fishermen caught several other fish while sampling was in progress. Station PEES 68-3 appeared to be the most polluted of the four points observed. A sample from this point was retained for analysis. At Station PEES 68-4 the bottom consisted of clean sand.

Color photographs were taken of the samples observed at each station.

These photographs are on file at the Chicago Program Office of the Federal Water
Pollution Control Administration.

The results of the analyses confirmed the field observations. These were moderate concentrations of total phosphorus and amionia nitrogen, traces of copper and chromium and a high concentration of sulfide. Lower concentrations of COD, organic nitrogen, phenol, oil and grease and total iron were found. No cyanide was found within the sensitivity of the test. These results indicate some pollution from domestic sources but no industrial pollution.

The water quality at the mouth of the Pensaukee River substantially not the criteria adopted by the Calumet Area Enforcement Conferess for inner harbor basins. It is recognized that these criteria cannot be officially applied at

Pensaukee Narbor and they are used therein for comparison and evaluation purposes only. Table LIII shows that all of the criteria were met except for dissolved solids and phenols. On May 21, 1958 the waters discharging to Green Pay from the Pensaukee River did not constitute a major source of pollution.

! (

I STEAK

FIELD OPSERVATIONS

PENSAUGE HARDOR May 21, 1968

Sta. PERS 69-1

Depth 6' Dark brown silty sand; clamshells, fishy odor.

Sta. PHIS 68-2

Depth 7'
Denk brown silty send; clamshells, fishy odor; h" bullhead caught in dredge, we released it alive.

Sta. PEES 68-3

Depth 7' Grey-black sand; a few sludgeworms; no odor sample retained.

Sta. PENS 68-4

Depth 4'
Clean sand; few sludgeworms; no odor.

JABLE III

RUSUUMS OM AMAIMSTS OF ECTION SEDIMENUS COLLECTED AT PERSAUKES HARDOR, May 21, 1968

Station PMMS 68-3

Parameter

64.57	
3.00	
32,751.	mg/kg
258	rg/kg
5 9.5	ng/lig
5.0	mg/kg
1155	mg/kg
0.79	mg/kg
976	mg/kg
1 1F	
105	mg/kg
4585	ng/kg
211	mg/lig
.80	mg/kg
22	mg/kg
15	mg/kg
1 1	mg/kg
20	mg/kg
	3.00 32,751. 258 59.5 5.0 1155 0.79 976 NF 105 4585 24 .80 22 15

All results reported on DRY basis.

NF - None found within sensitivity of test.

THE EAGIN

NESULES OF AHALESTS OF WATER SAMPLES COLLECTED AT PERSAURUE HARDON, May 21, 1968

Station PRAS 68-3

Paraseter		Criteria
Temperature OC	15	not more than 29.6
\vec{b}_{il}	8.6	within range 7.5-9.0
Suspended Solids	3 mg/1.	
Dissolved Solids	313 mg/l	not more than 230 mg/l
Turbidity	1.5 units*	, in the second
MRAS	0.10 rg/1	not more than 0.30 mg/1
Chloride	7.5 mg/l	not more than 30 mg/l
Sulfate	33 mg/l	not more than 75 mg/l
COD	52 mg/1	
Total Phosphorus	0.017 mg/l	not more than 0.033 mg/1
M ₃ -11	0.09 mg/l	not more than 0.12 mg/1
1110241103-11	o.ol mg/l	
Org. N	1.00 mg/1	
Phenol .	9 v3/1	not more than 5 vs/1
Oil and Grease	2.9 mg/l	
Cyanide	ME .	not more than 0.1 mg/1
Total Iron	0.71 mg/1	
Copper.	0.16 mg/1	
Cadmium	NF	
Nickel	0.05 mg/l	
Zine	0.05 mg/l	
load	0.01 mg/l	
Chromium	0.02 rg/1	·

^{*}Turbidity is expressed in APHA units, equivalent to Jackson units. NF - not detected within sensitivity of test.

APPENDIX A 13

REPORT OF THE DESIRED OF PORTUGEOF OF ECOTION SEDDMENTS IN FOX RIVER May 21, 1968

July 1958

Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office

Car Substitute of the

In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled For River on May 21, 1968. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorowicki - Boat Operator - Sampler

CONCLUSIONS

- 1. The bottom sediments in the area to be dredged in the Fox River are very heavily polluted.
- 2. The disposal of this natorial in open lake waters would constitute a serious source of phosphorus, nitrogen and other pollutants to the lake.
- 3. The voters of the Fox River entering Green Ray constitute a significant source of pollution.

EPERE

LEGEND

AREA TO BE DREDGED

× 68 3

BOTTOM SAMPLE OBSERVED

⊗ 68-1

BOTTOM SAMPLE RETAINED

WORK REMAINING TO BE DONE SHOWN THUS DUMPING GROUNDS:

PROJECT DEPTHS AND SOUNDINGS ARE REFERRED TO LOW WATER DATUM 576 B FEET ABOVE MEAN WATER LEVEL AT 1674R POINT, OUEBEC 16 L D (1955) (INTERNATIONAL CREAT LAKES DATUM)

PEAKS DISPOSAL AREA LAKE DISPOSAL AREA CHICAGO PROGRAM OFFICE CALUMET AREA SURVEILLANCE UNIT GREEN BAY HARBOR WISCONSIN SAMPLING STATIONS U. S. DEPARTMENT OF THE INTERIOR FEDERAL WATER POLLUTION CONTROL ADMIN.

GREAT LAKES REGION

CHICAGO, ILLINOIS

DISCUSSION OF RESUMES

The field observations at each of the four points observed within the area to be dredged indicate that the sediments are severely polluted. All of the samples were dark grey-brown and contained fibrous material. from paper will wastes. The only life found on the bottom were a few sludgeworms at Station GPAY 68-h. The large clamshells found at this point appeared to be refuse from a passing vessel.

Color photographs of all the observed samples are on file at the Chicago Program Office of the Pederal Water Pollution Control Administration.

The results of the chemical analysis of the bottom sediments at Station GPAY 68-1 confirm the field observations. All of the parameters measured indicate that the Fox River at Green Pay is one of the most severely polluted harbors on Lake Michigan. (See Table II).

Disposal of this natural in Lake Michigan or the open waters of Green Bay would constitute a serious source of phosphorus, nitrogen and other pollutants to the lake.

The water at Station GPAY 68-1 did not meet several of the criteria established by the Calumet Area Enforcement Conferees for Inner Harbor Basins. It is recognized that these criteria cannot be officially applied to the Fox River at Green Pay; they are used herein only for comparison and evaluation purposes. Table III shows that maximums for Dissolved Solids, Total Phosphorus, Ammonia Nitrogen and Phenols were exceeded on May 21, 1968.

TABLE I

FIDE ORDERVALIOUS OF DOTTOM SHOUMAINS FOX RIVER May 21, 1968

Sta. GBAY 68-1 Depth 22' Grey-brown silt,

Grey-brown silt, no odor, no life -

benieder offquea

Sta. GBMY 68-2 Depth 15'

Grey-brown silt, strong sewage odor, fibrous

material, no life visible

Sta. GBAN 68-3 Depth 16'

Grey-brown silt, streaks of red clay, sewage

odor, fibrous material, no life

Sta. GEAY 68-4 Depth 11'

Sandy silt, clamshells and sludgeworms, large shells,

probably dumped from boat

MARGE III

RESULTS OF ANALYSIS OF DOTTOM SEDIFFERS COLLEGED AS FOX RIVER, CITCH TAX, May 21, 1968

Station CENY 68-1

Paramater

🐕 Motal Solida	23.9 1.
% Volatile Solids	46.72
COD	251, 823 mg/kg
Total Phosphorus	3 48 mg/kg
инз-и	548 mg/hg
NO3-N	18 mg/kg
Org. N	63hh ng/kg
Phenol	13.5 ng/kg
Oil and Grease	6 880 ng/kg
Cyanide	0.66 mg/kg
Sulfide	23/4 mg/kg
Total Iron	15,246 mg/kg
Copper	7.1 ng/kg
Cadmium .	0.79 ng/kg
Nickel	58 mg/kg
Zinc	25). rg/kg
Lead	158 mg/kg
Chromium	146 mz/kg

All results are reported on a DNY basis.

THE REPORT

COMMORNA OF AMADYSIS OF WATER SAMPLES COMMORNA AT FOX REVEN, GESEN MAX, May 21, 1968

•	Station OWN 68-1	
Paramoter	•	Criveria
Temp. OC	J.6 .	not more than 29.6
рĦ	8.2	within range 7.5-9.0
Suspended Solids	19 mg/1	
Dissolved Solids	235 ng/1	not more than 230 $rg/1$
Turbidity	9.0 units"	
MRAS	0.05 mg/3.	not more then 0.30 mg/l
Chloride	8.5 mg/l	not more than 30 mg/1
Sulfate	28 ng/1.	not more than 75 mg/l
COD	30 mg/0.	·
Total Phosphorus	0.304 mg/1	not more than 0.033 mg/l
MH3-11	0.22 mg/l	not more than 0.12 rg/l
NO2+1103-11	0.05 mg/l	
Org. N	0.80 ng/1	
Phenolics	6 ps/1	not more than 5 pg/1
Oil and Grease	2.0 mg/l	
C yanide	I IF	not more than 0.1 mg/1
Total Iron	0.5½ mg/l	
Coppen	0.17 mg/1	•
Cadmiun	N F	
Nickel	0.05 ng/l	
Zinc	0.08 rg/l	
Load	0.01 ng/1	
Chromium	0.03 mg/l	

^{*}Turbidity is expressed in APHA units, equivalent to Jackson units. NF - not detected within sensitivity of test.

DOCAMION OF SAMPLING POTRES FOX RIVER AT GREEN BAY

May 21, 1968

Sta.	GMAY 68-1	Mid-channel, 200 feet upstreem of buoys 7 and 8. Lat. hho.291-45" Long. 880-011-53"
Sta.	GMA 68-5	Mid-channel, midway between buoys 10 and 12. Let. 440-291-57" Long. 880-021-14"
Sta.	GBAY 68-3	Mid-channel, between buoys 13 and 14. Lat. 440-281-11" Long. 830-021-35"
Ste.	GPAY 68-4	Mid-channel, 700 feet downstreem from buoy 16. Lat. 440-281-21" Long. 830-021-45"

APPENLIX A 14

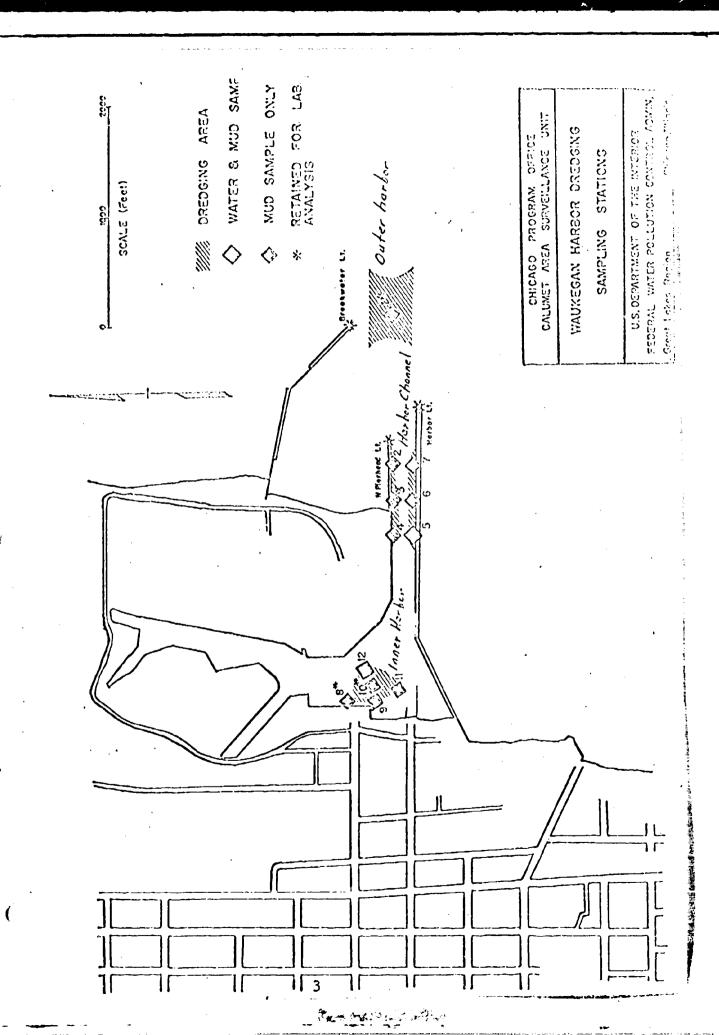
REPORT ON THE DEGREE OF POLLUTION OF BOTTOM SEDIMENTS IN WAUKEGAN HARBOR

March 29, 1968

April 1968

Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office

THE MEST SECTION


In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dreaged by the Corps of Engineers, personnel of the Chicago Program Office sampled Wauhegan Harbor on March 29, 1968. The points sampled represent areas scheduled for dreaging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorovicki - Boat Operator-Sampler

CONCLUSIONS AND RECOMMENDATIONS

- 1. The material inside the harbor is severely polluted and should not be disposed of in Lake Michigan.
- 2. The material in the outer channel off the brechwater light, is not severely polluted.
- 3. The material along both sides of the harbor channel contains a large number of rocks that apparently came from the breakwater or bulkheed and some finer material which has been affected by pollution from the harbor.

Discussion of Field Observations and Previous Expling (See Table 1)

The bottom in the outer harbor consists of light brown sand that probably drifted into the channel from other portions of the Lake. It did not appear to be polluted. Unis result agrees with the result of a survey made on May 15, 1967.

The bottom in the areas to be dredged along the north and south walls of the harbor channel is covered with large rocks. Three attempts were made at each of aix different points (Wauk. 68-2 thru Wauk. 68-7) to obtain a sample. One light brown rock, 3" in diameter, was found at station Wauk. 68-3 and a large flat rock, approximately 12" X 6" X 3" thick, was found at station Wauk. 68-5. Both of these rocks appear to be of the same material that makes up the breakwater and bulkhead. The rocks on the bottom made it impossible to collect a sample of the finer materials with the equipment available. Samples collected on May 15, 1967 near stations Wauk. 68-2 and Wauk. 68-5 indicated a dark grey sandy bottom that had been affected by pollution from the harbor but was not as polluted as the harbor bottom mads.

Five samples collected within the harbor appear to be heavily polluted. (stations Wauk. 68-8 thru Wauk. 68-12, See Table 1).

Discussion of Laboratory Results

The laboratory results confirm the findings of the field observations. At station 68-1 (see Table 2) the high percent solids indicates a well-drained or sandy sample and the low percent volatile solids indicates that there is little organic material. The samples collected inside the harbor (Nauk. 68-8 and Nauk. 68-12) have a low percentage of solids and a high percentage of volatile solids, indicating a finer material with more organic material. Total phosphorus, COD, ammonia nitrogen, organic nitrogen, phenol, oil and grease, cyanide, sulfide, total iron, copper, lead and chronium are all substantially higher inside the harbor. The disposal of material dredged from within the harbor in Take Michigan would add substantial amounts of nutrients and oil and grease to the lake.

Water samples collected in the harbor (Sta. Mauk. 68-12) and the channel (Sta. 68-5) indicate that there was no substantial difference in water quality between the two points (see table 3). The quality of the water meets the criteria for inner harbor basins established by the Calumet Area Enforcement Conference except for total phosphorus and ammonia nitrogen. It is recognized that these criteria are not officially applicable to Waukegan Marbor and are used only for the purpose of evaluating the quality of the water in the harbor. The quality of the water is generally satisfactory but action must be taken to reduce the amount of phosphorus reaching take Michigan from Waukegan.

DABUM I

FIRED CHRENVALTOLS OF FORTCH SERVICE THES MAUREGAR HARROR Murch 29, 1963

Sta.	Ekcukt.	68-1	Depth 26 feet - Light brown sand, some black speeks, no odor - sample saved for analysis.
Sta.	Wauk.	68-8	Depth 8.5 feet - bottom hard, no sample after 3 dips.
Sta.	Vault.	68-3	Depth 11 feet - bottom hard, one small brown rock in 3 dips.
Sta.	Mauk.	68-4	Depth 13 feet - bottom hard, no sample after 3 dips.
Sta.	Wauk.	68-5	Depth 1/4 feet - bottom hard, one large rock in 3 dips; water sample taken to indicate quality of herbor channel.
Sta.	Wauk.	68-6	Depth 10 feet - bottom hard; no sample after 3 dips.
Sta.	Wauk.	68-7	Depth 16 feet - bottom hard; no sample after 3 dips.
Sta.	Wauk.	68-8	Depth 15 feet - dark grey oily silt; slight petroleum odor; sample retained for laboratory analysis.
Sta.	Wauk.	68-9	Depth 25 feet - dark grey-brown silt; some sand and leaves; little odor.
Sta.	Wauk.	68-1.0	Depth 25 feet - dark grey silt; little odor; sample retained for laboratory analysis.
Sta.	Vaul:	68-11	Depth 25 feet - dark grey silt; little odor.
Sta.	Wauk.	68-12	Depth 25 feet - dark grey silt; little odor; water sample collected to indicate quality in harbor.

TABLE 2

RESULTS OF ANALYSIS OF EXETOM SEDTMENT SAMPLES
COLLECTED IN WAUKEGAN HARBOR March 29,1968

Station	Want. 68-1.	<u>Wault. 68-8</u> mg/kg	Wauk.68-12 m3/kg
Parameter	nes/ res	16/16	וונג/ זענ
% Solids	72.9%	311.0%	36.7%
% Volatile Solids	2.1%	12.9%	14.1%
T. Sol. Phosphorus	1.00	1.117	1.61;
Total Phosphorus	17 ^l t	8 56	1070
COD	1.9,100	145,500	157,000
NH3-N	16	106	1.83
1103-11	2.3	3.8	2.5
Organic-N	31 0	1,253	1,687
Phonol	0.252	1.57	1.15
Oil & Grease	1003	8061	11,093
C yanide	0.15	2.5	0.68
Sulfide	1.96	70.0	110
Total Iron	7,420	26,400	25,400
*Cu	* ·	65	1,6
Cd	*	*	⊀ ·
Ni	*	*	*
Zn	81	200	297
Pb	15	425	837
Cr	*	6 2	1,1,

Results reported on DRY basis

^{*} Indicates none found within sensitivity of test

RESULTES OF AMALYSIS OF WAVER SAMPLES COLLEGED IN WAVERTHANDOR March 29, 1968

Station	Wawt. 68-5	West: 68-12 ng/1
Parameter		
pli	7. 5	8.2
Tung. Oc	9	9
Dissolved Solids	193	Sor
Suspended Sollids	21.	3.6
Turbidity	9.1;	5.3
Spec. Conductance	3 30	340
T. Sol. Phosphorus	0.010	0.038
Total Phosphorus	0. 096	0.092
COD	23	26
MI3-N	0. 38	0.77
1103-11	0. 39	0.34
Organic-N	0. 36	0.53
Phenol (ug/l)	2	4
C yanide	0.01	0.02
Total. Iron	0.40	0.33
Cu	0.05	0.02
Cd	*	*
Ni	*	*
2n	0.01;	*
Pb	*	*
Cr	0:02	0:10
SOL	0.25	0.27
Cl	7.0	8.5
MBAS	0. 10	0.12

^{*} Indicates none found within sensitivity of test

TABLE 4

LOCATION OF SAMPLING PORIES

WAUKUBAN HANBOR March 29, 1968

- Sta. Want. 68-1. Outer harbor 450' south of breakwater light Long. 870-481-37"
- Sta. Wank. 68-2 Harbor channel 10 feet from north bullhead Int. 120-21'-10"

 Iong. 870-18'-54"
- Sta. Wauk. 68-3 Harbor channel 10 feet from north bulkhead Lat. 420-21-40"
 Long. 870-481-58"
- Ste. Wauk. 68-4 Herbor channel 10 feet from north bulkhead Let. 120-211-10" Long. 870-191-03"
- Sta. Wark. 68-5 Harbor channel 10 feet from south breakwater Lat. 420-21'-39"
 Long. 870-49'-03"
- Sta. Wauk. 68-6 Harbor channel 10 feet from south breakwater Lat. 420-211-39"
 Long. 870-481-58"
- Sta. Wauk. 68-7 Harbor channel 10 feet from south breakwater Lat. 420-21'-39"
 Long. 870-48'-54"
- Ste. Wauk. 68-8 Wauhegan Harbor 20 feet east of bulkhead at foot of Clayton Street

 Lat. 420-211-45"
 Long. 870-491-24"
- Sta. Wauk. 68-9 Waukegan Harbor 20 feet southeast of corner in bulkhead at Waukegan Yacht Club

 Lat. 420-21:-42"

 Long. 870-49:-24"
- Ste. Wauk. 68-10 Waukegan Harbor 200 feet east of bulkhead Int. 420-21:-43"

 Long. 870-49:-23"

TABLE 4 (contid)

Sta. Wauk. 68-11 Waukegan Harbor 300 feet southeast of corner in bulkhead at Waukegan Yacht Club

Lat. 420-21:-40"

Long. 870-49:-23"

Sta. Wauk. 68-12 Wauhegen Harbor 350' east of bulkhead Lat. 420-21'-43" Long. 870-49'-21"

APPENDIX A 14

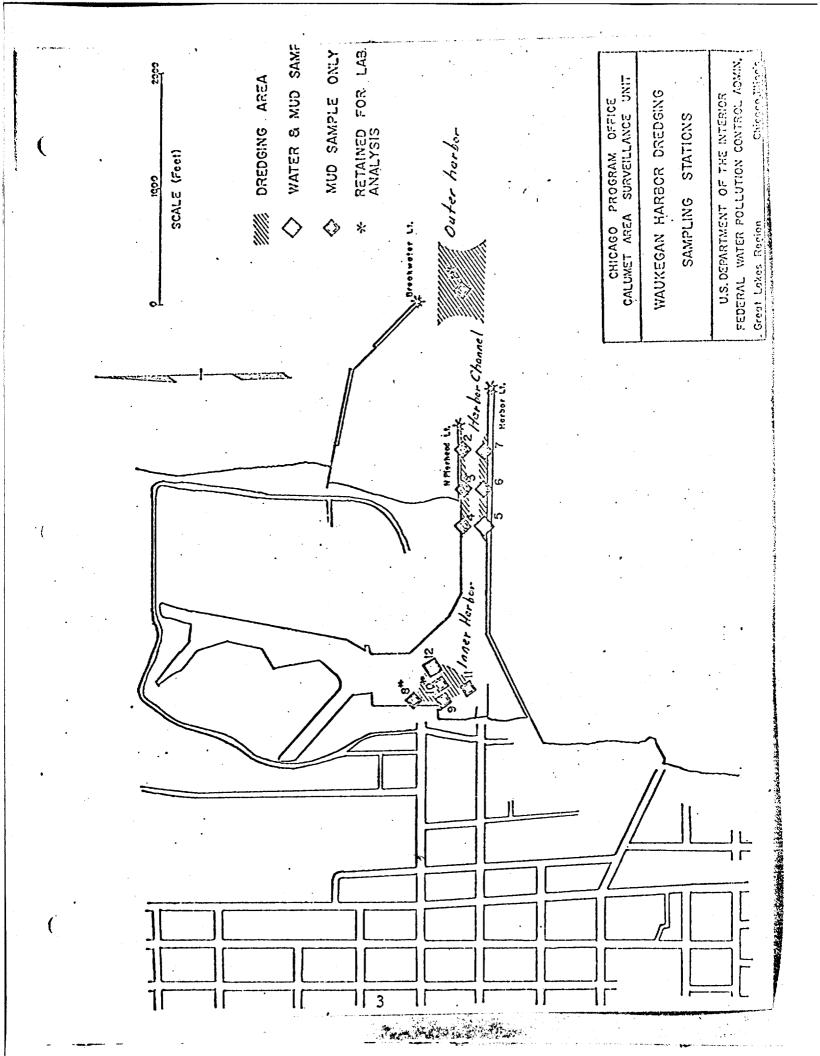
REPORT ON THE DEGREE OF POLLUCION OF FOTTOM SEDIMENTS IN VALUE GAN HARDOR

March 29, 1958

April 1968

Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office

The second second second


In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled Waukegen Harbor on March 29, 1968. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorovicki - Boat Operator-Sampler

CONCLUSIONS AND RECOMMENDATIONS

- 1. The material inside the harbor is severely polluted and should not be disposed of in Lake Michigan.
- 2. The material in the outer channel, off the breakwater light, is not severely polluted.
- 3. The material along both sides of the harbor channel contains a large number of rocks that apparently came from the breakmater or bulkhead and some finer material which has been affected by pollution from the harbor.

Discussion of Field Observations and Previous Empling (See Pable 1)

The bottom in the outer herbor consists of light brown sand that probably drifted into the channel from other portions of the lake. It did not appear to be polluted. Unis result agrees with the result of a survey rade on May 15, 1967.

The bottom in the areas to be dredged along the north and south walls of the harbor channel is covered with large rooks. Three attempts were made at each of six different points (Vault. 68-2 thru Wault. 68-7) to obtain a sample. One light brown rock, 3" in diameter, was found at station Waukt. 68-3 and a large flat rock, approximately 12" X 6" X 3" thick, was found at station Waukt. 68-5. Both of these rocks appear to be of the same material that makes up the breakwater and bulkhead. The rocks on the bottom made it impossible to collect a sample of the finer materials with the equipment available. Samples collected on May 15, 1967 near stations Waukt. 68-2 and Waukt. 68-5 indicated a dark grey sandy bottom that had been affected by pollution from the harbor but was not as polluted as the harbor bottom made.

Five samples collected within the harbor appear to be heavily polluted. (stations Wauk. 68-8 thru Wauk. 68-12, See Table 1).

Discussion of Laboratory Results

The laboratory results confirm the findings of the field observations. At station 68-1 (see Table 2) the high percent solids indicates a well-drained or sandy sample and the low percent volatile solids indicates that there is little organic material. The samples collected inside the harbor (Want. 68-8 and Want. 68-12) have a low percentage of solids and a high percentage of volatile solids, indicating a finer material with more organic material. Total phosphorus, COD, enconia nitrogen, organic nitrogen, phenol, oil and grease, cyanide, sulfide, total iron, copper, lead and chronium are all substantially higher inside the harbor. The disposal of material dredged from within the harbor in Lake Michigan would add substantial encounts of nutrients and oil and grease to the lake.

Water samples collected in the harbor (Sta. Wank. 68-12) and the channel (Sta. 68-5) indicate that there was no substantial difference in water quality between the two points (see table 3). The quality of the water weets the criteria for inner harbor basins established by the Calumet Area Enforcement Conference except for total phosphorus and ammonia nitrogen. It is recognized that these criteria are not officially applicable to Wankegan Harbor and are used only for the purpose of evaluating the quality of the water in the harbor. The quality of the water is generally satisfactory but action must be taken to reduce the amount of phosphorus reaching take Michigan from Wankegan.

JABIN J.

FIRED ORGANIZATIONS OF ROLLOW SUBMERING MAURECAR HAISON March 29, 1963

Sta. Wank, 68-1.	Dapth 25 feet - Light brown sand, some black speeks, no odor - sample saved for enalysis.
Sta. Wauk. 68-2	Depth 8.5 feet - bottom hard, no sample after 3 dips.
Sta. Wauk. 68-3	Depth Al feet - bottom hard, one small brown rock in 3 dips.
Stn. Mark. 68-4	Depth 13 feet - bottom hard, no sample after 3 dips.
Sta. Mank. 60-5	Depth M: foot - bottom herd, one large rock in 3 dips; water sample taken to indicate quality of harbor channel.
Sta. Wauk. 68-6	Depth 10 feet - bottom hard; no sample after 3 dips.
Sta. Wauk. 68-7	Depth 16 feet - bottom hard; no sample after 3 dips.
Sta. Wauk. 68-8	Depth 15 feet - dark grey oily silt; slight petroleus odor; semple retained for laboratory analysis.
Sta. Wauk, 68-9	Depth 25 feet - dark grey-brown silt; some sand and leaves; little odor.
Sta. Wauk, 68-10	Depth 25 feet - dark gray silt; little eder; sample retained for laboratory analysis.
Sta. Wauk. 69-11	Depth 25 feet - dark grey silt; little odor.
Sta. Wauk. 68-12	Depth 25 feet - dark grey silt; little odor; water sample collected to indicate quality in harbor.

PARKS OF ANALYSIS OF DOTTOM SHOTMERS SAMPLES COLLECTED IN WALKSTAN HARBOR METCH 29,1958

Station	Vant. 68-1	Want: 63-8	Wankt. 68-12
Parameter	mg/kg	ng/kg	mg/leg
ර Sollids	72.9%	34.0%	36.7%
% Volutile Solids	2.1%	12.9%	14.1%
T. Sol. Phosphorus	J., 00	1.187	1.64
Total Phosphorus	3.714	856	1070
COD	19,000	1.45,500	157,000
. ин3-и	1 .6	1.06	183
1103-11	2.3	3. 8	2.5
Organic-II	310	1,253	1,687
Phenol.	0.252	1.57	1.15
Oil & Grease	1003	8061	11.,093
C yanide	0.15	2.5	0.68
Sulfide	1.96	70.0	1 10
Total. Iron	7,420	26,1100	25,400
• Cu	☆	65	46
Cd	*	*	⊀ ·
Ni	*	☆	*
7·n	8 1	200	2 97
Pb	15	425	837
Cr	*	62	44

Results reported on DRY basis

^{*} Indicates none found within sensitivity of test

TABLE 3

RESULES OF ANALYSIS OF WARER SAMPLES
COLLECTED IN VAUKEBAN NARBOR March 29, 1968

Station	Vauk. 68-5	Wavi: 68-12 mg/1
Parameter	. 37	
plI	7.5	8.2
Temp. OC	9	9
Dissolved Solids	193	501
Suspended Solids	2).	1 8
Torbidity	9.1;	5.3
Spec. Conductance	3 30	340
T. Sol. Phosphorus	0.040	0.038
Total. Phosphorus	0. 096	0.092
COD	23	26
MI3-11	0.38	0.77
N03-11	0.39	0.31
Organic-N	0.3 6	0.53
Phonol (v3/l)	2	14
C yanide	0.03.	0.02
Total Iron	0.40	0.33
C u	0.05	0.02
Cd	*	*
Ni	*	*
Z n	0.01+	*
P b	*	*
Cr	0:02	0:10
S0 <u>1</u>	0.25	0.27
Cl	7.0	8.5
MBAS	0.10	0.12

^{*} Indicates none found within sensitivity of test

TABLE 4

LOCATION OF SAMPLIES PORTES

WAUKEGAH HAREOR March 29, 1968

- Sta. Wank. 68-1 Outer harbor 450' south of breakwater light Lat. 420-21'-40"
 Long. 870-48'-37"
- Sta. Wauk. 63-2 Harbor channel 10 feet from north bulkhead Lat. 420-21'-40"

 Long. 870-48'-54"
- Sta. Wauk. 68-3 Harbor channel 10 feet from north bulkhead Lat. 420-211-40"
 Long. 870-481-58"
- Sta. Wauk. 68-h Harbor channel 10 feet from north bulkhead Lat. 420-21:-40"
 Long. 870-49:-03"
- Sta. Wark. 68-5 Harbor channel 10 feet from south breakwater Lat. 120-21'-39"
 Long. 870-49'-03"
- Sta. Wauk, 68-6 Herbor channel 10 feet from south breakwater Lat. 420-21:-39"
 Long. 870-48:-58"
- Sta. Wauk. 68-7 Harbor channel 1.0 feet from south breakwater Lat. 420-21'-39"
 Long. 870-48'-54"
- Ste. Wauk. 68-8 Waukegan Harbor 20 feet east of bulkhead at foot of Clayton Street

 Lat. 420-21:-45"
 Long. 870-49:-24:"
- Sta. Wauk. 68-9 Waukegan Harbor 20 feet southeast of corner in bulkhead at Waukegan Yacht Club

 Int. 420-21:-42"

 Long. 870-49:-24"
- Sta. Wauk. 68-10 Waukegan Harbor 200 feet cast of bulkhead Int. 420-21'-43"

 Long. 870-49'-23"

MARKE 4 (contid)

Sta. Wank. 68-11 Wankegan Harbor 300 feet southeast of corner in bulkhead at Wankegan Yacht Chub

Lat. 120-21-10"

Long. 870-191-23"

Sta. Wauk. 69-12 Waukegan Harbor 350' east of bulkhead Lat. 120-21:-43" Long. 870-49:-21"

APPENDIX A 15

REPORT ON THE DEGREE OF POLIURION OF BOTTOM SEDIMENTS IN KENOSIA HARBOR April 24, 1968

May 1968

Federal Water Pollution Control Administration Great Lekes Region Chicago Program Office

The state of the s

In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled Kenosha Harbor on April 24, 1958. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorowicki - Boat Operator - Sampler Steven Pardieck - Engineer

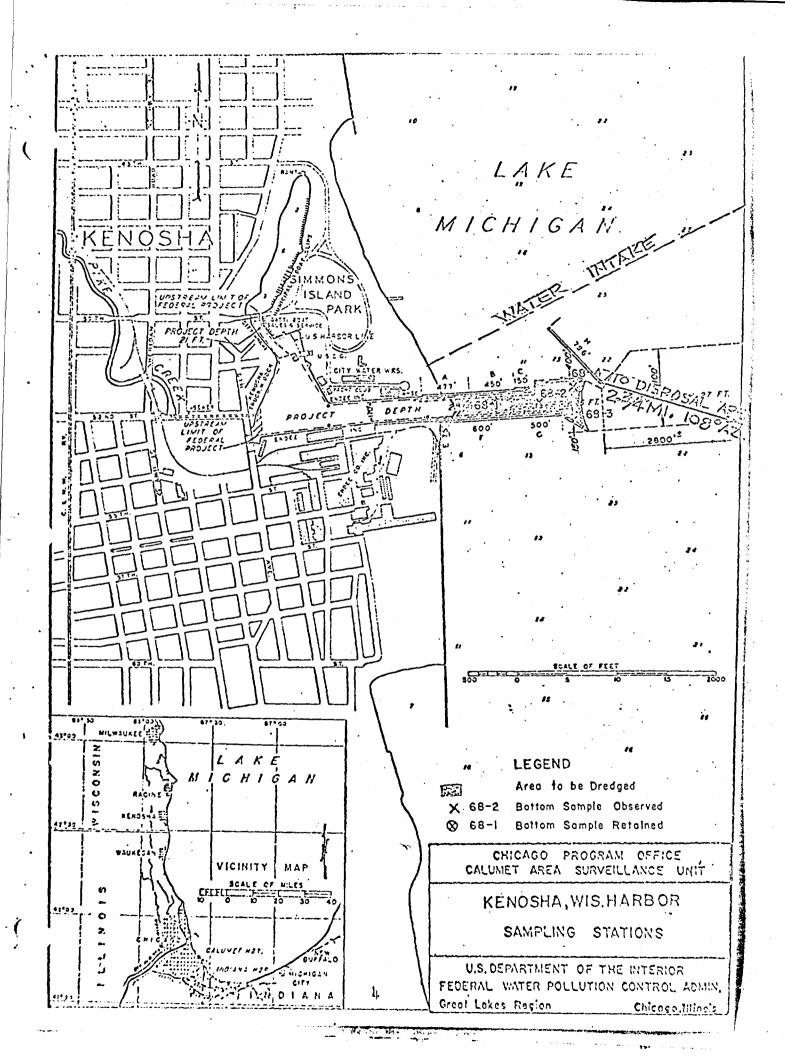
CONCLUSIONS AND RECOMMENDATIONS

- 1. There has been no serious shouling in the area indicated for maintenance dredging and the need for such dredging should be investigated.
- 2. The clays on the harbor bottom show moderate pollution from parameters indicating industrial wastes but do not contain high concentrations of nutrients.
- 3. The water entering Take Michigan from Kenosha Harbor met reasonable criteria for inner harbor waters and did not constitute a serious pollution source on April 24, 1968.
- 4. If maintenanced redging is required, it is minimal and the spoil would not add substantial amounts of nutrients to the Lake if it was disposed of in the normal dumping area.

These comments apply only to sediments in the area outlined on the map on page 4. Sediments in the inner harbor were not sampled and may be severely polluted.

Pun Maria Sant

DISCUSSION OF RUSUIES


The bottom sediments at each of the four points consisted of a grey clay which had a strong fish odor and a large population of sludgeworms (see Table 1). All c the samples were taken at a depth of 27 feet or greater and no evidence of shouling sand was found. A considerable amount of light brown sand was found in the harbor on May 3, 1967 (see page 9) but none was found on April 24, 1968. Maintenance dredging may not be required during 1968.

The station selected for analysis of the bottom sediment was Station KEN 68-1 which is the most upstream station (see map, page 4) and, presumably, the most seriously polluted station. The results (Table 2) indicate moderate pollution with considerable COD, oil and grease and iron concentrations. Concentrations of phosphorus, phenol, cyanide and sulphide were moderate.

The large population of sludgeworms indicates the presence of considerable amounts of organic material but little or no toxic materials. The concentration of phosphorus was lower than concentrations found in other harbors. This may indicate that the clay is not the result of sedimentation but is a natural formation exposed by currents or previous dredging.

Photographs of all of the mud samples are on file at the Chicago Program Office.

The water in the harbor met the criteria adopted by the Calumet Area Conferees for Inner Harbor Basins." These criteria are used for comparison purposes only, they are not officially applicable to Kenosha Harbor. The results of the analysis of the water sample (see Table 3) show that the water entering Inke Michigan from Kenosha Harbor was not polluted on the day the sample was collected.

TABLE 1

FIELD OBSERVATIONS OF BORTOM SEPERATISKEROSHA HARBOR

April 24, 1968

Sta. WH 68-1 Depth 28 feet Grey sillt, some oil, sludgevorms, fishy odor.

Sta. KEN 68-2 Depth 28 feet Grey silt with black speeks, sludgeworms, fishy odor.

Sta. KEN 68-3 Dopth 27 feet Grey clay, black spots, fishy odor.

Sta. KEN 68-4 Depth 30 feet Grey clay, black spots, sludgeworms, fishy odor.

August 10 and 10 the

TABLE 2

RESULTS OF AMAINSTS OF TOTACH SEDUMENT SAMPLES COLLECTED IN RESIDENA MARIOR APPLE 25, 1968

Station	<u>ken-68-1.</u> rg/kg
Parameter	
& Wotel Solids	5 9.5
& Volatile Solids	14.9
COD	111,800
Total Sol. Phosphorus	0.61
Total Phosphorus	66.5
MH3-H	178
NO3-N	3.8
Org-II	9 39
Phenol	1.15
Oil and Grease	3,550
	0.02
Cyanide	37
Sulfide	12,530
Total Iron	NF
Copper	1.8
Cadmium	30
Nickel	
Zine	1.38
Lead	39
Chronium (Total)	NF

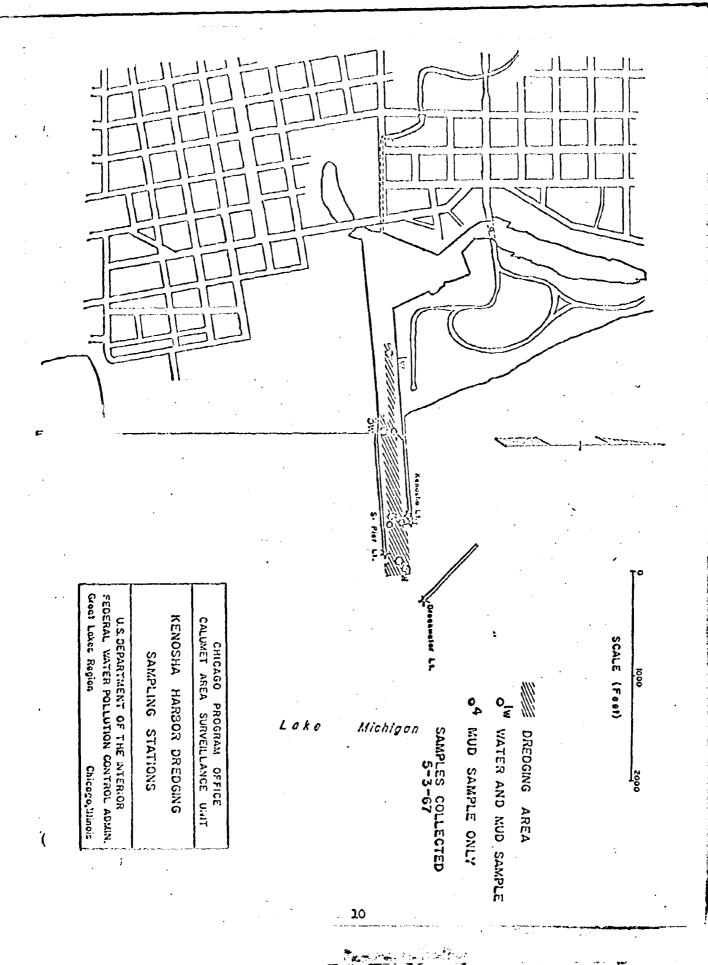
NF Not detected at sensitivity of test.
All results reported on a DRY basis.

TABLE 3

RESULTS OF ANALYSIS OF WATER SAMPLES COLLECTED IN KULOSHA HARBOR April 24, 1968

Station	m=/1 ken-68-5
Parameter	11(5) A
Suspended Solids	17
Dissolved Solids	168
*Turbidity	4.0
· MBAS	0.10
Chloride	8.0
Sulfate	25
COD	46
Total Sol. Phosphorus	0.01
Total Phosphorus	0. 05
NH3-N	0.05
NO3-N	0.16
Org-N	1.0
Phenol	0.001.
Oil and Grease	**
Cyanide	NF
Total Iron	0.05

*Turbidity is expressed in APMA units, equivalent to Jackson units.
** Sample bottle broken
NF- None Found


LOCATION OF SAMPLING POIGLS

April 24, 1968

- Sta. Not 68-3. Mid-channel 550' upstreem from Kenosha Light Lat. 420-35'-18"
 Long. 870-48'-38"
- Sta. Kell 68-2 Mid-chennel between Kenosha Light and South Pier Light Long. 870-18'-29"
- Sta. 19.11 68-3 500' east of Kenochu Light Lat. 1120-35'-20" Long. 8γο-18'-23"
- Ste. KEN 68-h 300' east of South Pier Light Lat. 420-35'-17"
 Long. 870-48'-23"

Figure occupantations on bosech samples kerosha harpen may 3, 196 γ

Beeple		Water Death.
JA	Brown clay, some sand, no édor	20 ft.
5	Brown elean sand, no odor	5 5 ".
3W	Park brown oily silt and clay; sludge worss noted; plight petrol eder	23 "
1,	Light brown sand, some silk, slight fish odor	55 "
5	Light brown sand, some silt, no oder	21 "
6 W	Light brown sand with some black specks, no od	lor 25 "

APPENDIX A 16

FINAL REPORT ON THE DEGREE OF POLICITION OF BOTTOM SEDIMENTS IN MILMAUKEE HARPOR

April 24, 1968

May 1963

Feder: Water Pollution Control Administration Great Lakes Region Chicago Program Office

The second was a sure of the first

In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled Filwaukee Harbor on April 24, 1968. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorovicki - Boat Operator-Sampler Steven Pardicck - Engineer

PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS

- 1. Bottom sediments in the areas to be dredged in the Kinnickinnic River are severely polluted by domestic sewage and should not be disposed of in Take Michigan.
- 2. Bottom sediments in the areas to be dredged in the Menominee River are severely polluted by oil and demestic sewage and should not be disposed of in Take Michigan.

FINAL CONCLUSIONS

The final conclusions are identical to the preliminary conclusions.

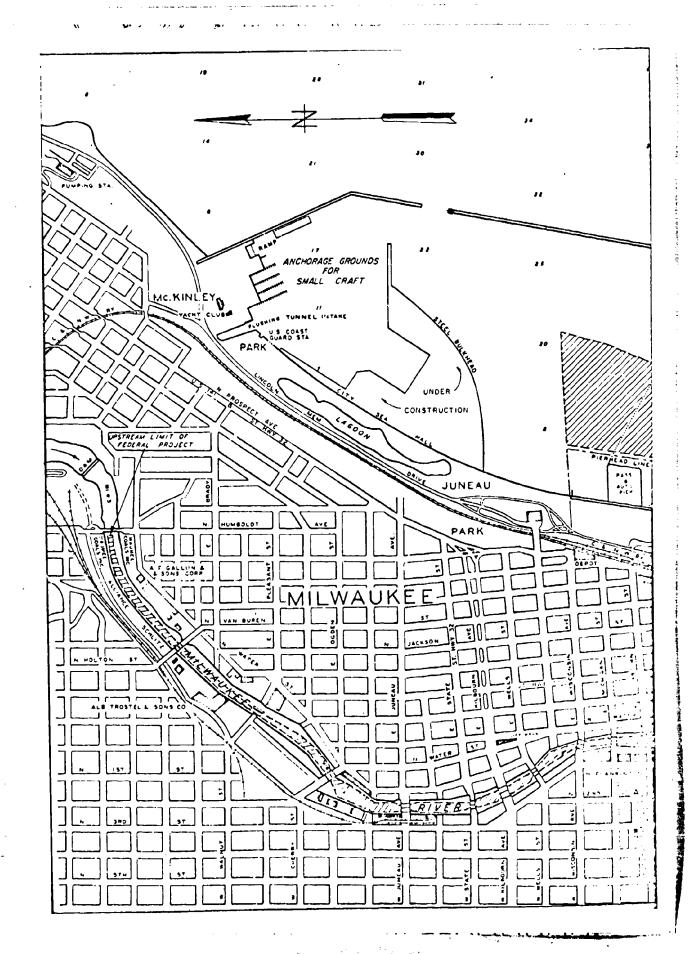
It is recommended that no dredged material from Milwaukee Marbor be disposed of in Lake Michigan.

Discussion of Field Observations

Bottom sediments in the areas to be dredged in the Kinnickinnic River consist of dark grey clay and silt and contain large populations of sludge worms and fingernail class both of which are very pollution-tolerant organisms. Their presence in large numbers indicate the presence of a great deal of organic matter but a lack of toxic exterials from industrial processes. This area of the river is seriously polluted by sewage probably from combined sewer overflows (see Table 1 - Stations MIEM 68-1, 68-2 and 68-3).

Bottom sediments in the Menominee River between 19th Street and 22nd Street consist of black silt with a strong petroleum odor. They are very heavily polluted by both industrial wastes and domestic sewage (see Table 1 Stations MILW 68-4, 68-5, 68-6, 68-7 and 68-8).

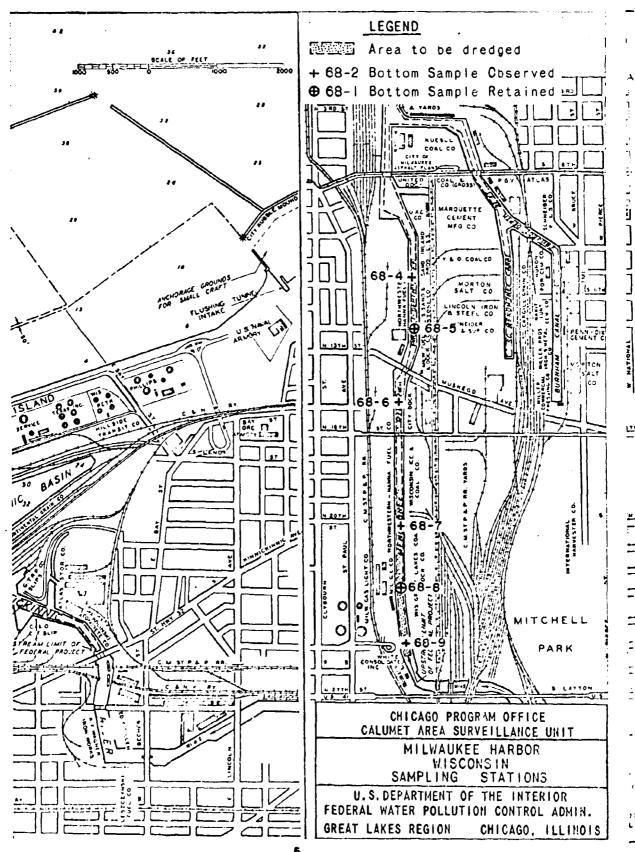
Station MILW 68-9 at 25th Street appeared to be upstream of the oil pollution but is heavily polluted by domestic sewage. The most probable source is combined sewer overflows.


Discussion of Chemical Results

The results of the chemical analysis confirm the conclusions drawn from field observations. The area at the mouth of the Kinnickinnic River is highly polluted by domestic wastes or combined sewage overflows. Concentrations of phosphorus and sulfide at Station MILW 68-1 (see Table 2) were high and concentrations of oil and grease, iron and COD were moderately high. High concentrations of zine and lead were also found.

All of the samples taken in the Menominec River were very heavily polluted by both domestic and municipal vastes. All of the chemical parameters measured indicate severe pollution at stations MILM 68-5 and MILW 68-8. Field observations (see Table 1) indicate that there is no substantial difference at the other stations sampled.

Bottom scdiments from Milwaukee Harbor are severely polluted, and their disposal in Take Michigan constitutes a serious source of phosphorus and other pollutants to the lake.


Ten Marie Continue

The state of the state of

LAKE "MICHIGAN PROJECT DEPTH 30 FT HARBOR REFUGE 0 F PROJECT DEPTH 28 FT. MILWAUKEE

The Marie Wall of the Control of the

TABLE I

FIGEID OBSERVATIONS

MILMAUKEE HARBOR (Kinnickinnic Biver) April 24, 1968

Sta. MIUM 68-1	Depth 25' - Grey clay; many sludgeworms; slight petroleum
	odor; sample retained for analysis.

Sta. MILM 68-2 Depth 29' - Dark grey silt; class and sludgeworms; slight sewage odor.

Sta. Mill 68-3 Depth 23' - Dark grey silt; sludgewomms; little odor; some petroleum.

MILMAUKEE HAREOR (Menominee River) April 24,1968

Sta. MILW 68-4	Depth 21' - Black silt; grey streaks; strong petrol odor; few sludgeworms.
Sta. MILW 68-5	Depth 20' - Black silt: petroloum olor: sludgeworms: sampl

Sta. MIIM 68-6 Depth 20' - Black silt; strong petroleum odor; gravel.

retained.

- Sta. MILW 68-7 Depth 22'- Black silt; brown streaks; petroleum odor.
- Sta. MILM 68-8 Depth 22' Brown-black silt; petroleum odor; sample retained.
- Sta. MILW 68-9 Depth 20' Grey-brown silt; strong sewage odor.

TABLE 2

RESULAS OF AMALYSES OF BOTTOM SEDIMENT SAMPLES

COLLECTED IN MICHAUKEE HARBOR April 24,1968

Station	MIIM 68-1	MICM 68-5. mg/kg	MLTM 98-8
Parameter			
% Total Solids	5 6.5	48.0	41.9
స్థ Voletile Solids	5.7	16.2	19.3
COD	1.08,900	251,500	223,700
Total Sol, Phosphorus	5.01	3.1.20	2.43
Total Phosphorus	301	35 ¹ +	1,121
1813-N	3 83	281	5 82
N03-И	10.6	8.3	14
Org-N	1,607	6,118	3,157
Phenol	5. 85	2.05	3. 38
Oil and Grease	4,660	20,850	26,140
Cyanide	NF	0.80	1.40
Sulfide	2 80	1,180	466
Total Iron	12,890	19,890	19,700
Copper	1UF	22	20
Cadmiun	0. 69	6.5	10.3
Nickel	41	5 6	1 2
Zinc	5 jht	3/10	NF
Iend	165	3 63	360
Chroniun	NF	1.8	40

NF Not detected within sensitivity of test.

All results reported on a DRY basis.

7

MOCATTION OF SAMPLICATE POLICES

April 24, 1968

Sta. MUM 68-1 Kinnichinnic River - 100 feet off west bulkhead at north end of Afran Bros. building
Let. 430-01'-17"
Long. 870-54:-20"

Sta. MIDM 68-2 Kinnichinnic River - 100 feet off cost bulbhead opposite Afran Bros. - Simelair Refining slip.

Lat. 430-01'-11"

Long. 870-54:-10"

Sta. MILM 68-3 Kinnichinnic River - 150 feet off west shore, 350 feet downstream from U.S. Coast Guard Depot Lat. 430-001-56"
Long. 870-541-12"

Sta. MILM 68-4 Menominee River - 30 feet off north bulkhead at S. Eleventh Street

Lat. 430-01-55"
Long. 870-55-29"

Sta. MILW 68-5 Menominee River - 30 feet off south bulkhead, 600 feet west of S. Eleventh St.

Int. 430-01'-56"

Long. 870-55'-37"

Sta. MILM 68-6 Menominee River - 30 feet off north bulkhead, 550' east of 16th Street bridge
Lot. 430-01'-59"
Long. 870-55'-51"

Sta. MILM 68-7 Menominee Rever - midstream, 1350 feet west of 16th Street bridge

Lat. 430-01'-59"

Long. 870-56'-17"

Sta. MIIM 68-8 Menominee River - midstream, 2350 feet west of 16th Street bridge
Lat. 430-01'-58"
Long. 870-56'-30"

Sta. MJLM 68-9 Menorance River - midstream, 3150 feet west of 16th Street bridge

Lat. 430-01'-57"

Long. 870-56'-41"

APPENDIX A 17

REPORT OF THE DEGREE OF POLICIETON OF BOTTOM SEDDMENTS IN PORT WASHINGTON MARBOR

April 24, 1968

MAY 1968

Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office

There may be made to be

In accordance with an agreement between the Federal. Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled Port Washington Harbor on April 24, 1968. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

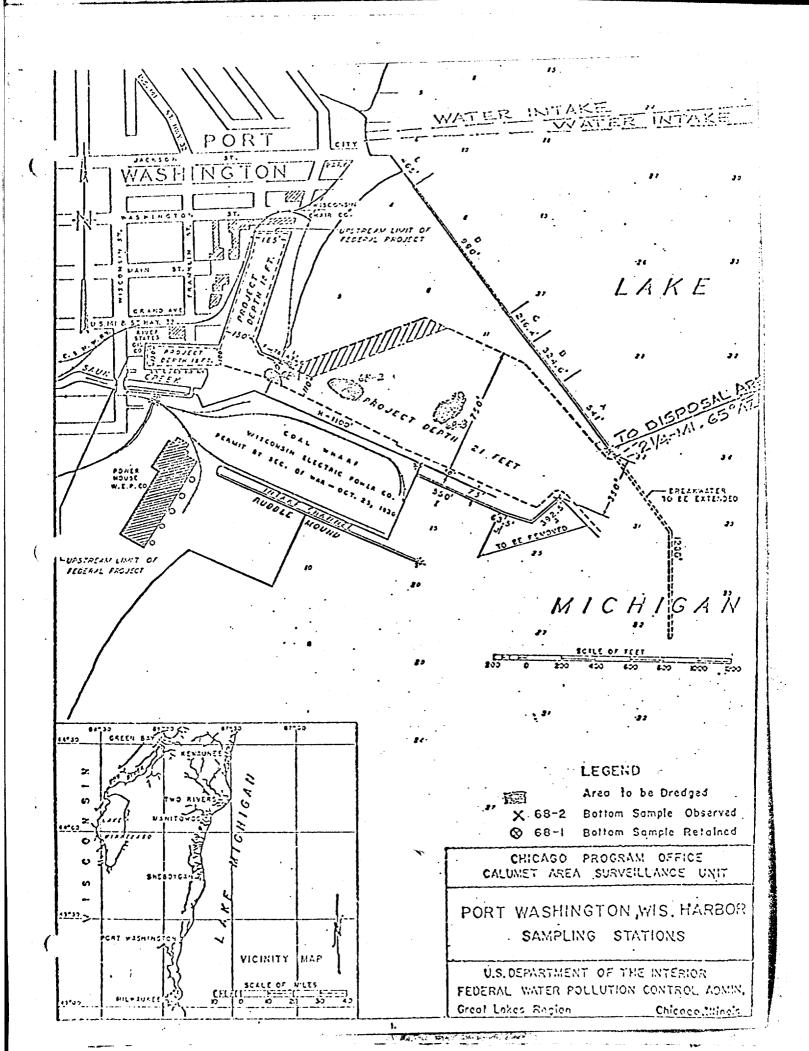
Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorowicki - Boat Operator-Sampler Steven Pardieck - Engineer

Best Available Copy

CONCLUSIONS AND RECOMMENDATIONS

- 1. The bottom sediments in Port Washington Harbor are not as severely polluted as those found in other Lake Michigan harbors.
- 2. The disposal of these sediments in Lake Michigan would not add substantial amounts of nutrients to the Lake.
- 3. The water quality at Port Washington meets reasonable criteria and does not constitute a serious source of pollution except that the amount of phosphorus should be reduced.


DISCUSSION OF RESULES

The sediments in Port Washington harbor were sampled in each of the three areas designated for maintenance dredging by the Corps of Engineers (see map, page 4). Field observations (Table 1) show greater amounts of sand and less grey silty material at stations PWASH 68-2 and PWASH 68-3. This indicates that these points are less affected by pollution than Sta. PWASH 68-1 which is at the mouth of the inner harbor. All of the samples contained large populations of sludgeworms.

Sediment from station PWASH 68-1 was selected for chemical analysis because it is presumed to be the most polluted. A water sample was also taken at station PWASH 68-1 to indicate the quality of the water being discharged to Lake Michigan from Sauk Creek and Port Washington harbor.

The sediment at Sta. PWASH 68-1 was not severely polluted. It contained moderate concentrations of COD and Sulphide and relatively low concentrations of phosphorus, nitrogen, phenol, cyanide and total iron. The term "relatively low concentrations" as used herein means that these concentrations are lower than concentrations found in sediments in other harbors on Lake Michigan. It does not mean that these concentrations are low when compared to natural conditions or that the harbor sediments are completely free of pollution.

The water quality at Sta. PWASH 68-1 met the criteria for inner harbor basins established by the Calumet Area Enforcement Conference except for the criterion on total phosphorus. These criteria are used for comparison purposes only. They cannot be officially applied to the waters of Port Washington harbor. On April 24, 1968 the water being discharged to Iake Michigan from Port Washington harbor did not constitute a serious source of pollution but action is required to reduce the amount of phosphorus discharged to Sauk Creek and the harbor.

TABLE 1

FIELD OBSERVATION OF ROLLOW SEDICATIVES POINT WASHINGTON HANFOR

April 24, 1968

Sts. PWASH 68-1 Depth 22.5 ft.

Grey-brown sandy silt, slight sewage odor,

sludgeworms.

Sta. PWASH 68-2 Depth 22 ft.

Grey-brown sandy silt, slight sewage odor,

.amovogbula

Sta. PWASH 68-3 Depth 22 ft.

Grey-brown sand, no olor, sludgeworms.

TABLE 2

RESULTS OF AMAINSTS OF BOTTOM SEDDMENT SAMPLES COLLECTED IN PORT WASHINGTON HARBOR April 24, 1968

Station	PWASH 68-1 mg/kg
Parameter	
% Total Solids	55.6
% Volatile Solids	,12.0
COD	66,900
Total Sol. Phosphorus	3.00
Total Phosphorus	8.45
NH3-11	347
ио ₃ -и	4.7
Org-N	761
Phenol.	1.32
Oil and Grease	1745
Cyanide	0.04
Bulfide	5 2
Total Iron	7,532
Copper	NF
Cadmium	1.5
Nickel	52
Zinc	31
Lead	41
Chromium (Total)	NF

NF Not detected at sensitivity of test.

All results are reported on a DRY basis.

TABLE 3

RESULTS OF ANALYSIS OF WATER SAMPLES
COLLECTED IN PORT WASHINGTON HARDOR April 24, 1968

Station	PWASH 68-3 mg/l
Parameter	
Suspended Solids	94
Dissolved Solids	188
*Turbidity	41
MBAS	0.12
Chloride	10
Sulfate	3 ¹ 1
COD	5 3
Total Sol. Phosphorus	0.05
Total Phosphorus	0.13
NII3-N	0.04
no3-n	1.3
OrgN	1.3
Phenol .	0.003
Oil and Grease	1.0
Cyenide)if
Total Iron	2.6
pH	8.4
Temp. °C	9

*Turbidity is expressed in APMA units, equivalent to Jackson units. NF--None Found

IOCATION OF SAMPLING POINTS

PORT WASHINGTON HARBOR April 24, 1968

Sta. PWASH 68-1 Mid-channel between coal dock and inner light Lat. 430-20'-12"
Long. 870-52'-03"

Sta. PWASH 68-2 250' from coal dock, 550' from inner light Lat. 430-20'-11"
Long. 870-51'-55"

Sta. PWASH 68-3 400' from south pier light, 950' from breakwater light

Lat. 430-20'-10"

Long. 870-51'-17"

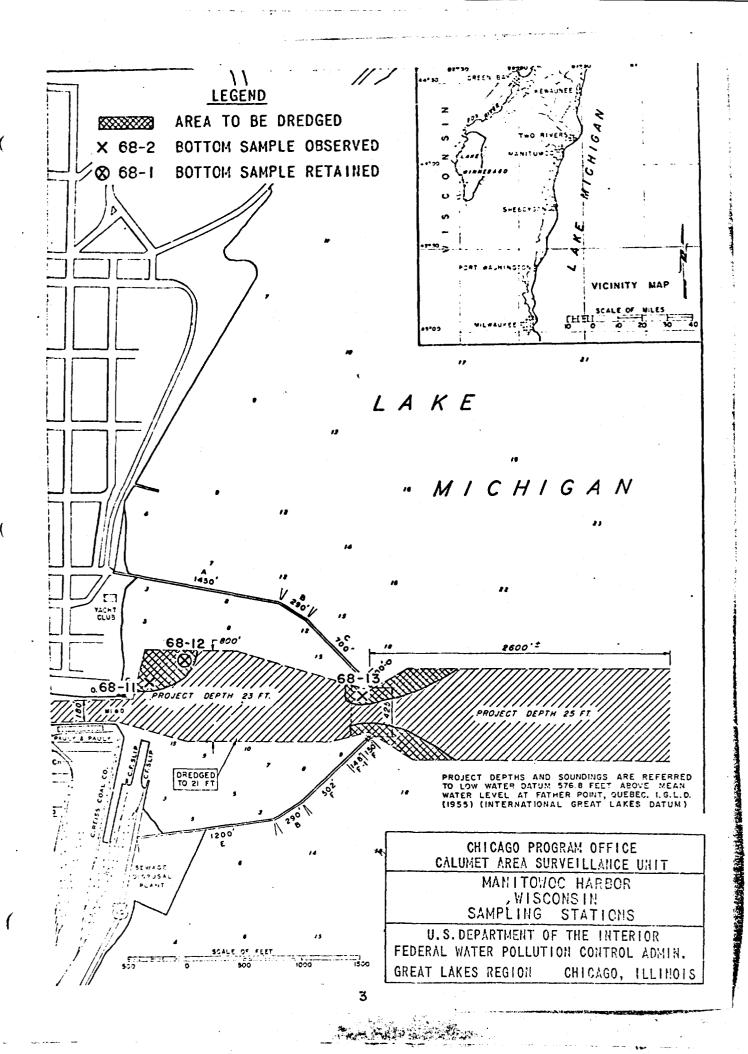
APPENDIX A 18

REPORT ON THE DEGREE OF POLLUTION OF BOTTOM SEDDIMENTS IN MANITOWOC HARBOR

April 23, 1968

May 1968

Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office In accordance with an agreement between the Federal. Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled Manitowoc Harbor on April 23, 1968. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.


Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorowicki - Boat Operator-Sampler Steven Pardieck - Engineer

CONCLUSIONS AND RECOMMENDATIONS

- 1. Bottom sediments in the Manitowoo River upstream of the Eighth Street bridge are polluted and their disposal in Lake Michigan would constitute a significant source of nutrients and other pollutants to the Lake.
- 2. Bottom sediments in Manitowoc Harbor downstream of the mouth of the river consist primarily of sand. Disposal of this sand in the lake would not constitute a significant source of nutrients.
- 3. The water being discharged to Lalz Michigan from the Manitowoc River did not meet several criteria developed for similar waters. Efforts should be made to reduce the amount of phosphorus discharged to the river.

DISCUSSION OF RESULTS

The bottom sediment at Station MANI 68-1 is moderately polluted by both industrial and desestic wastes. The concentrations of cyanide and oil and grease were low but concentrations of iron, phenol, COD, zinc and lead were moderately high and the concentration of sulphite was high when compared with other Wisconsin harbors on Lake Michigan. Phosphorus and nitrogen concentrations were moderately high as was the percentage of volatile solids.

This indicates the presence of organic materials from domestic sources (see Table 2). The field observations (Table 1) do not mention the presence of sludgeworms or other benthic organisms. The organic contamination is not bad enough to cause a total destruction of benthic life so that the area is probably subject to high concentrations of toxic metals from industrial sources. The high zinc and lead concentrations confirm this. The field notes indicate that the materials at Stations MANI 68-2 and MANI 68-3 have the same general characteristics (see map, page 3).

The sediments at Station MANI 68-5 are more severely polluted by both industrial and domestic wastes. Concentrations of industrial pollutants (phenol, cyanide, iron and the toxic metals) were only slightly higher but the concentrations of phosphorus, nitrogen and COD were considerably higher at MANI 68-5, indicating considerable domestic pollution. The most probable source of this pollution is combined sever overflows or direct discharges to the river. The lack of benthic life and the grey-brown color found at stations MANI 68-9 and MANI 68-10 indicate that severely polluted conditions extend at least to the Eighth Street bridge and probably to the mouth.

The same of the sa

The acdiments at Station MANI 68-12 consisted primarily of brown sand that is prevalent in Lake Michigan on the western shore. The chemical analysis shows that the pollution is much less severe than in the river. Concentrations of phosphorus, oil and greace, cyanide, sulphide, iron and lead are all comparatively low. The presence of sludgeworms at Station MANI 68-11 indicates that benthic life can survice in the area.

It was originally intended to collect more samples near Station MANI 68-13 but rough water prevented this. Station MANI 68-13 was clean sand and it is likely that the entire area to be dredged around the outer harbor mouth consists of clean sand.

A water sample was collected at Station MANI 69-11 to indicate the quality of water being discharged from the Manitowoc River to Lake Michigan. The results were compared to the criteria adopted for inner harbor basins by the Calumet Area Enforcement Conference. These criteria are used for comparison purposes only, they are not officially applicable to Manitowoc Harbor. The maximum criteria for dissolved solids, sulphates and phosphorus were not met. Average criteria for MBAS, ammonia and phenols were not met. This indicates that the Manitowoc River constitutes a moderately severe source of pollution to Take Michigan. Particularly serious is the concentration of total phosphorus. Efforts should be made to reduce the amount of phosphorus discharged to the stream.

TABLE I

FIELD OBSERVATIONS OF EOTICM SEDIMENTS MAINLTOWOG HAREOR April 23, 1968

Station MANI 68-1	Depth 17' Sandy silt, grey-brown, some leaves and twigs,c odor.
Station MANI 68-2	Depth 20' Grey-brown sand, some black specks, leaves and twigs, no odor.
Station MANI 68-3	Depth 18.5' Grey-brown silt, cinders, no odor.
Station MANI 68-4	Depth $2l_{+}^{\dagger}$ Grey-brown sandy silt, gravel, slight fish odor.
Station MNII 68-5	Depth 20' Grey-brown silt, twigs, no odor.
Station MANI 68-6	Depth 19.5' Grey-brown silt, no odor
Station MANI 68-7	Depth 20.5' Brown silt, some oil, no odor.
Station MANI 68-8	Depth 21' Grey silt, gravel, no odor.
Station MANI 68-9	Depth 16' Grey-brown sand, some twigs, no odor.
Station MANI 68-10	Depth 15' Grey-brown sand, no odor.
Station MANI 68-11	Depth 20' Brown sand, silty black spots, sludgeworms, no odor.
Station MANI 68-12	Depth 21' Brown sand, no odor.
Station MANI 68-13	Depth 24' Sand, no odor.

TABLE 2

RESULTS OF ANALYSIS OF DOTTOM SHIDDENT SAMPLES

COLLECTED IN MANUFONOC MAREOR April 23, 1968

Station	MANI-68-1 mg/kg	MAHI-68-5 mg/kg	MANI-68-12 mg/kg
Parameter			
% Total Solids	52.3	47.6	48.7
% Volatile Solids	14.6	16.1	11.3
COD	81, 800	112,200	105,000
Total Sol. Phosphorus	7.50	30.44 .	20.73
Total Phosphorus	147	672	54.0
ин ₃ -и	2 95	67.6	3 90
ио ₃ -и	9.2	9.2	11
Org-N	2,088	2,859	2,690
Phenol	2.84	2.17	2.57
Oil and Grease	1,21,3	2, 897	1,447
C yanide	0.03	0.08	0.05
Sulfide	80	5 3	NF.
Total Iron	10,720	12,940	6,324
Copper	· NF	5.3	NF
Cadmium	1.4	1.5	2.1
Nickel	29	17	NF
Zinc	195	1 20 ,	90
Lead	5 3	97	47
Chronium	NF	NF	NF .

NF Not detected at sensitivity of test. All results reported on a DKY basis.

The Marie To Take I will be

TABLE 3

RESULTS OF ANALYSIS OF WATER SALVIES COLLECTED IN MANIFOMOC HARBOR APRIL 23, 1968

Station	MANI-68-11 mg/1	·
Parameter		
Suspended Solids	6 7	
Dissolved Solids	325	
*Turbidity	28	
MEAS	0.24	
Chloride	15	
Sulfate	87	
COD	275	
Total Sol. Phosphorus	0.13	
Total Phosphorus	0.37	
	0.10	
NH3-N	1.4	
1103-11	2.1,	
Org-N	0.005	
Phenol	3.1	
Oil and Grease	NF	
Cyanide	3.8	
Total Iron	8.2	
pH Temp. °C	10	
emmassisty to expressed	in APHA units, equivalent to	Jackson units.

*Turbidity is expressed in APHA units, equivalent to Jackson units.

NF - None found

LOCATION OF SAMPLING POLITS

MANTHOMOC HARBOR April 23,1968

- Sta. MANI 68-1 Manitowoe River 30 feet from south bank, 300 feet east of Manitowoe Eng. Co. dry dock

 Lat. 440-05'-01"

 Long. 870-39'-53"
- Sta. MANI 68-2 Manitowoc River-100 feet from north bank opposite east end of Manitowoc Eng. Co. building

 Lat. 440-06'-01"

 Long. 870-39'-48"
- Sta. MANI 68-3 Manitowoc River 75 feet from south bank, 300 feet upstream from Manitowoc Ship building boat holst
 Lat. 440-05'-58"
 Long. 870-39'-45"
- Sta. MANI 68-4 Manitowoc River 50 feet from south bank, 250 feet upstream from Soo Line Railroad lift bridge
 Lat. 440-05'-48"
 Long. 870-39'-51"
- Sta. MANI 68-5 Manitowoc River 100 feet from east bulkhead, 250 feet south of Soo Line Railroad lift bridge
 Lat. 44:0-05'-45"
 Long. 870-39'-57"
- Sta. MANI 68-6 Manitowoc River 100 feet from west bulkhead 150 feet from south bulkhead in corner of turning basin downstream of Soo Line Railroad lift bridge.

 Lat. 440-05'-45"

 Long. 870-40'-02"
- Sta. MANI 68-7 Manitowoc River 75 feet from northeast bulkhead at foot of S. Fourteenth Street

 Lat. 440-05'-41"

 Long. 870-39'-53"
- Sta. MANI 68-8 Manitowoc River 50 feet from southwest bulkhead at foot of South Thirteenth Street

 Lat. 440-05'-35"

 Long. 870-39'-50"
- Sta. MANI 68-9 Monitowoo River 50 feet from north bulkhead at Ninth Street

 Lat. 440-05'-33"

 Long. 870-39'-32"

Location of Sampling Points (Manitowoo Harbor (Cont'd)

- Sta. MANI 68-10 Manitowoo River 50 feet from south bulkhead at Ninth Street Let. 440-051-31"
 Long. 870-391-32"
- Sta. MANI 68-11 Manitowoc Harbor 200 feet east of Pierhead Light Lat. 440-05'-33"
 Long. 870-39'-03"
- Sta. MANI 68-12 Manitowoo Harbor 400 feet northeast of Pierhead Light Lat. 440-05'-35"
 Long. 870-39'-00"
- Sta. MANI 68-13 Manitowoo Harbor 100 feet south of North Breakwater Light Lat. 440-05'-33"
 Long. 870-36'-37"

APPENDIX A 19

FINAL

REPORT ON THE DEGREE OF POLLUTION OF BOTTOM SEDIMENTS IN TWO RIVERS HARBOR

April 22, 1968

April 1968

Federal Water Pollution Control Administration Great Lakes Region Chicago Program Office In accordance with an agreement between the Federal Water Pollution Control Administration and the United States Army Corps of Engineers that the Federal Water Pollution Control Administration would determine the degree of pollution of bottom sediments in harbors to be dredged by the Corps of Engineers, personnel of the Chicago Program Office sampled Two Rivers Harbor on April 22, 1968. The points sampled represent areas scheduled for dredging on a map provided by the Corps of Engineers.

Members of the sampling crew were:

Robert J. Bowden - Sanitary Engineer Joseph V. Slovick - Hydraulic Technician Daniel Chorowicki - Boat Operator-Sampler Steven Pardieck - Engineer

CONCLUSIONS PASED ON FIELD OBSERVATIONS

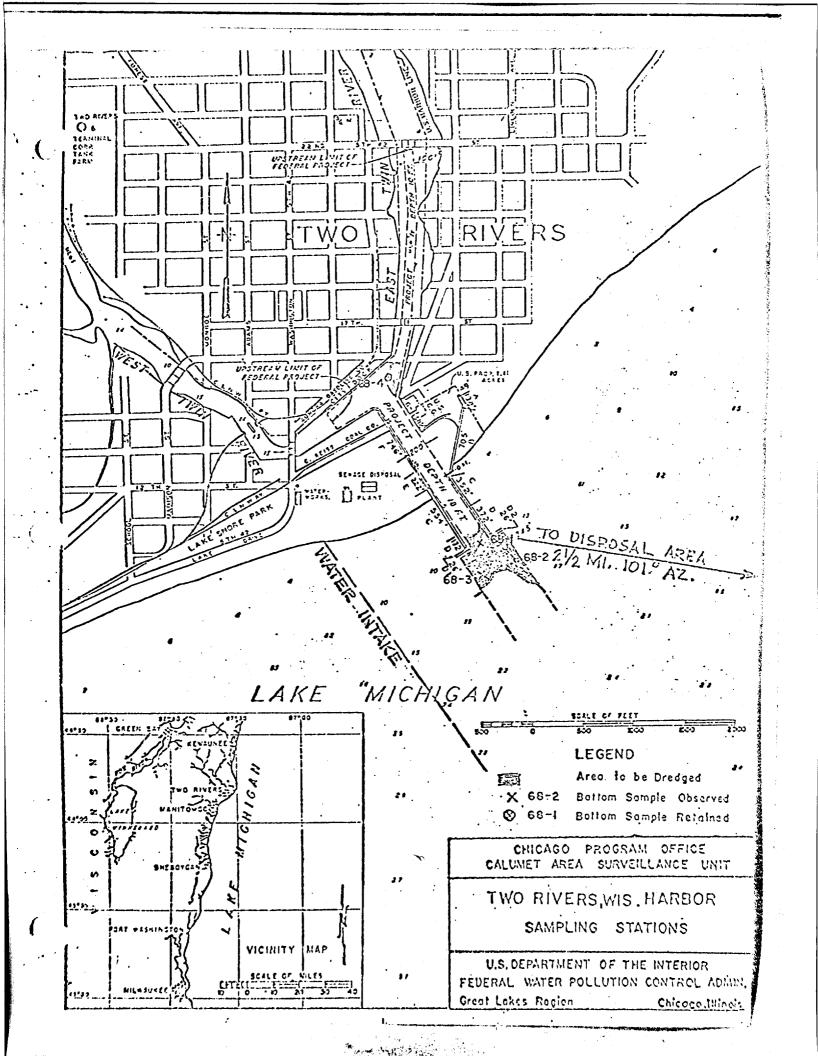
- 1. The bottom sediment in the area near the end of the breakwaters is clean sand.
- 2. Bottom sediments in the area at the mouth of the East Twin River are not seriously polluted.

FINAL CONCLUSIONS

- 1. The bottom sediment in the area near the outer end of the breakwater is clean sand.
- 2. Bottom sediments in the area at the mouth of the East Twin River are seriously polluted and should not be disposed of in Lake Michigan.
- 3. The water at the mouth of the East Twin River contained significant amounts of pollution, especially nitrogen and phosphorus. Action should be taken to reduce the amount of nutrients discharged to the stream.

Discussion of Field Observations (See Table 1)

The Corps of Engineers dredge "KEWAUNEE" was operating in the area outside of the breakwater lights on April 22, 1968, the day of the bottom sampling. Mr. Wesley LaVever, raster of the dredge, indicated that they had been operating since April 6, 1968 as scheduled.


A barge was partially filled with dredged material. All of the material appeared to be clean sand. This agreed with the samples collected at stations TRIV 68-1, TRIV 68-2 and TRIV 63-3 (see table 1).

The sample collected at Sta. TRIV 68-1; was made up of sand with some silt. It did not appear to be severely polluted. (See Page 5)

Mr. LaFever reported that the dredging was about 80% complete and that all of the spoil was sand except for some silt from the inner harbor area. The spoil was disposed of in the disposal area in Take Michigan.

A water sample was collected at Sta. TRLV 68-4 to indicate the water quality in the haroor. This sample may have been contaminated by red lead paint which was floating on the water. It came from painting on the 16th Street bridge over the East Twin River.

Color photographs of the bottom sediments found at TRIV 68-3 and 68-4 and of the sand in the barges are on file at the Chicago Program Office.

DISCUSSION OF LADDINATORY RESULAS

The laboratory results do not confirm the conclusion taken from field observations that the bottom sediments at Sta. TRIV 68-4 are not seriously polluted. The results (Table 2) show high concentrations of COD, phosphorus, nitrogen, phenol and sulphide and moderately high concentrations of cyanide, from and oil and grease. This indicates serious pollution from both domestic and industrial sources.

Analysis of the water sample collected at this point also indicates considerable pollution (see Table 3). Maximum inner harbor basin criteria for dissolved solids, total phosphorus and ammonia nitrogen were not met. Sulphate, phenol and MBAS concentrations were dangerously close to the maximum allowable under the criteria and higher than the allowable averages. The criteria are those adopted for inner harbor basins by the Calumet Area Enforcement Conferees and are used for comparison purposes only. They are not officially applicable to Two Rivers Harbor. The COD was also very high although no reasonably applicable criterion has been published for this parameter.

The material in the inner harbor should not be disposed of in Lake Michigan. There is no evidence to indicate that a significant amount of this material reached the dredging area around the pierhead lights. All of the field observations indicated that spoil from that area consisted of sand that drifted into the channel from other parts of Lake Michigan.

LOCALMON OF SAMPLING POINTS

TWO RIVERS HARBOR April 22, 1968

- Sta. FRIV 68-1 Mid-channel between North Pierhead Light and South Pierhead Light Lat. 440-03'-34"

 Long. 870-33'-39"
- Sta. TRIV 68-2 400 feet southeast of North Pierhead Light Lat. 14:0-03:-31"
 Long. 870-33:-35"
- Sta. TRIV 68-3 350 feet southeast of South Pierhead Light Lat. 440-081-30"
 Long. 870-331-39"
- Sta. TRIV 68.4 Mouth of East Twin River 150 feet off E. River Street bulkhead

 Lat. 440-08'-50"

 Long. 870-33'-52"

TABLE 1

FIELD ORSENVACIONS OF ECONOM SECURENCES TWO RIVERS HARBOR April 22, 1968

Sta.	1RIV 68-1	Depth 18' - no sample after 3 dips.
Sta.	TRIV 68-2	Depth 19' - clean sand some white stones 1/4" dia.
Sie.	TRIV 68-3	Depth 17' - clean sand; no odor.
Sta.	TRIV 68-4	Depth 19' - brown sandy silt; sample retained.

TABLE 2

RESULTS OF ANALYSIS OF POTTOM SEDIMENT SAMPLES COLLECTED IN TWO REVERS HARBOR APRIL 22,1968

Station	TRIV 68-11
Parameter	
% Total solids	40.3
% Volatile solids	14.6
COD	155,400
Total Sol. Phosphorus	19.43
Total Phosphorus	469
MI3-N	360
No3-N	21
Org-N	5560
Phenol	3.r. u
Oil and Groase	3,986
Cy anide	0.15
Sulfide	250
Total, Iron	9,935
Copper	NF
Cadmiun	. 1. 6
Nickel	21
Zinc	238
Lend	:62
Chromium	\mathbf{n}
NE Not detected within censity	ivity of test.

NF Not detected within sensitivity of test.

All results reported on a DRY basis.

TABLE 3

RESULTS OF ANALYSIS OF WATER SAMPLES
COLLECTED IN TWO RIVERS MARKOR April 22, 1968

Station	TRIV 68-14 ng/1	Criteria Inner Harbor Pasin
Parameter		: .
Suspended solids	75	
Dissolved Solids	29 3	max 230
*Turbidity	41	
MRAS	0.26	" 0.3 0
Chloride	10	" 30
Sulfato	69	" 75
COD	265	
Total Sc Phosphorus	0.08	
Total Phosphorus	0.17	" 0. 03
1013-И	0.15	" 0.12
· 1103-11	3.4	
Org-N	1.4	
Phenol .	0.005	" 0. 005
Oil and Grease	3.4	
C yanide	MF.	" 0.01
Total Iron	3. 6	
рĦ	7.9	7.5-9.0
Temperature °C	10	" 29. 4

^{*}Turbidity is expressed in APHA units, equivalent to Jackson units.

NF - None found